Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T20:41:05.336Z Has data issue: false hasContentIssue false

Functional connectivity based brain signatures of behavioral regulation in children with ADHD, DCD, and ADHD-DCD

Published online by Cambridge University Press:  23 December 2021

Christiane S. Rohr*
Affiliation:
Child and Adolescent Imaging Research Program, The University of Calgary, Calgary, AB, Canada Alberta Children’s Hospital Research Institute, The University of Calgary, Calgary, AB, Canada Owerko Centre, The University of Calgary, Calgary, AB, Canada Mathison Centre for Mental Health, The University of Calgary, Calgary, AB, Canada Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, Canada Department of Radiology, The University of Calgary, Calgary, AB, Canada
Signe L. Bray
Affiliation:
Child and Adolescent Imaging Research Program, The University of Calgary, Calgary, AB, Canada Alberta Children’s Hospital Research Institute, The University of Calgary, Calgary, AB, Canada Owerko Centre, The University of Calgary, Calgary, AB, Canada Mathison Centre for Mental Health, The University of Calgary, Calgary, AB, Canada Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, Canada Department of Radiology, The University of Calgary, Calgary, AB, Canada Department of Pediatrics, The University of Calgary, Calgary, AB, Canada
Deborah M. Dewey
Affiliation:
Alberta Children’s Hospital Research Institute, The University of Calgary, Calgary, AB, Canada Owerko Centre, The University of Calgary, Calgary, AB, Canada Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, Canada Department of Pediatrics, The University of Calgary, Calgary, AB, Canada Department of Community Health Sciences, The University of Calgary, Calgary, AB, Canada
*
Corresponding author: Christiane S. Rohr, email: [email protected]

Abstract

Behavioral regulation problems have been associated with daily-life and mental health challenges in children with neurodevelopmental conditions such as attention-deficit/hyperactivity disorder (ADHD) and developmental coordination disorder (DCD). Here, we investigated transdiagnostic brain signatures associated with behavioral regulation. Resting-state fMRI data were collected from 115 children (31 typically developing (TD), 35 ADHD, 21 DCD, 28 ADHD-DCD) aged 7–17 years. Behavioral regulation was measured using the Behavior Rating Inventory of Executive Function and was found to differ between children with ADHD (i.e., children with ADHD and ADHD-DCD) and without ADHD (i.e., TD children and children with DCD). Functional connectivity (FC) maps were computed for 10 regions of interest and FC maps were tested for correlations with behavioral regulation scores. Across the entire sample, greater behavioral regulation problems were associated with stronger negative FC within prefrontal pathways and visual reward pathways, as well as with weaker positive FC in frontostriatal reward pathways. These findings significantly increase our knowledge on FC in children with and without ADHD and highlight the potential of FC as brain-based signatures of behavioral regulation across children with differing neurodevelopmental conditions.

Type
Regular Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, F., Ras, J., & Seedat, S. (2012). Volumetric structural magnetic resonance imaging findings in pediatric posttraumatic stress disorder and obsessive compulsive disorder: A systematic review. Frontiers in Psychology, 3, 568. https://doi.org/10.3389/fpsyg.2012.00568 CrossRefGoogle ScholarPubMed
Ameis, S. H., Lerch, J. P., Taylor, M. J., Lee, W., Viviano, J. D., Pipitone, J.Anagnostou, E. (2016). A diffusion tensor imaging study in children with ADHD, autism spectrum disorder, OCD, and matched controls: Distinct and non-distinct white matter disruption and dimensional brain-behavior relationships. The American Journal of Psychiatry, 173(12), 12131222. https://doi.org/10.1176/appi.ajp.2016.15111435 CrossRefGoogle ScholarPubMed
American Psychiatric Association (2000). Diagnostic and statistical manual of mental disorders: DSM-IV-TR. American Psychiatric Association, Washington, D.C.Google Scholar
American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders: DSM-5. American Psychiatric Association, Washington, D.C. Google Scholar
Armbruster, D. J., Ueltzhöffer, K., Basten, U., & Fiebach, C. J. (2012). Prefrontal cortical mechanisms underlying individual differences in cognitive flexibility and stability. Journal of Cognitive Neuroscience, 24(12), 23852399. https://doi.org/10.1162/jocn_a_00286 CrossRefGoogle ScholarPubMed
Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121(1), 6594.CrossRefGoogle ScholarPubMed
Barkley, R. A., & Fischer, M. (2010). The unique contribution of emotional impulsiveness to impairment in major life activities in hyperactive children as adults. Journal of the American Academy of Child and Adolescent Psychiatry, 49(5), 503513.Google ScholarPubMed
Becker, A., Steinhausen, H. C., Baldursson, G., Dalsgaard, S., Lorenzo, M. J., Ralston, S. J.ADORE Study Group (2006). Psychopathological screening of children with ADHD: Strengths and difficulties questionnaire in a pan-European study. European Child and Adolescent Psychiatry, 15(Suppl 1), I56I62, https://doi.org/10.1007/s00787-006-1008-7,CrossRefGoogle Scholar
Birn, R. M., Molloy, E. K., Patriat, R., Parker, T., Meier, T. B., Kirk, G. R.Prabhakaran, V. (2013). The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage, 83, 550558. https://doi.org/10.1016/j.neuroimage.2013.05.099 CrossRefGoogle ScholarPubMed
Blair, C., & Raver, C. C. (2015). School readiness and self-regulation: A developmental psychobiological approach. The Annual Review of Psychology, 66, 711731. https://doi.org/10.1146/annurev-psych-010814-015221 CrossRefGoogle ScholarPubMed
Brandl, F., Le Houcq Corbi, Z., Mulej Bratec, S., & Sorg, C. (2019). Cognitive reward control recruits medial and lateral frontal cortices, which are also involved in cognitive emotion regulation: A coordinate-based meta-analysis of fMRI studies. Neuroimage, 200, 659673. https://doi.org/10.1016/j.neuroimage.2019.07.008 CrossRefGoogle ScholarPubMed
Bray, S., & O'Doherty, J. (2007). Neural coding of reward-prediction error signals during classical conditioning with attractive faces. Journal of Neurophysiology, 97(4), 30363045. https://doi.org/10.1152/jn.01211.2006 CrossRefGoogle ScholarPubMed
Brem, S., Grünblatt, E., Drechsler, R., Riederer, P., & Walitza, S. (2014). The neurobiological link between OCD and ADHD. Attention Deficit Hyperactivity Disorder, 6(3), 175202. https://doi.org/10.1007/s12402-014-0146-x CrossRefGoogle ScholarPubMed
Conners, C. K., Sitarenios, G., Parker, J. D., & Epstein, J. N. (1998). The revised Conners' Parent Rating Scale (CPRS-R): Factor structure, reliability, and criterion validity. Journal of Abnormal Child Psychology, 26(4), 257268. https://doi.org/10.1023/a:1022602400621 CrossRefGoogle ScholarPubMed
Cortese, S., Castellanos, F. X., Eickhoff, C. R., D'Acunto, G., Masi, G., Fox, P. T.Eickhoff, S. B. (2016). Functional decoding and meta-analytic connectivity modeling in adult attention-deficit/hyperactivity disorder. Biological Psychiatry, 80(12), 896904. https://doi.org/10.1016/j.biopsych.2016.06.014 CrossRefGoogle ScholarPubMed
Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29(3), 162173. https://doi.org/Doi10.1006/Cbmr.1996.0014 CrossRefGoogle ScholarPubMed
Crane, L., Sumner, E., & Hill, E. L. (2017). Emotional and behavioural problems in children with Developmental Coordination Disorder: Exploring parent and teacher reports. Research in Developmental Disabilities, 70, 6774. https://doi.org/10.1016/j.ridd.2017.08.001 CrossRefGoogle ScholarPubMed
Dewey, D., Kaplan, B. J., Crawford, S. G., & Wilson, B. N. (2002). Developmental coordination disorder: Associated problems in attention, learning, and psychosocial adjustment. Human Movement Science, 21(5-6), 905918. https://doi.org/10.1016/s0167-9457(02)00163-x CrossRefGoogle ScholarPubMed
Diamond, A. (2013). Executive functions. The Annual Review of Psychology, 64, 135168. https://doi.org/10.1146/annurev-psych-113011-143750 CrossRefGoogle ScholarPubMed
Egner, T., Etkin, A., Gale, S., & Hirsch, J. (2008). Dissociable neural systems resolve conflict from emotional versus nonemotional distracters. Cerebral Cortex, 18(6), 14751484. https://doi.org/10.1093/cercor/bhm179 CrossRefGoogle ScholarPubMed
Elton, A., Alcauter, S., & Gao, W. (2014). Network connectivity abnormality profile supports a categorical-dimensional hybrid model of ADHD. Human Brain Mapping, 35(9), 45314543. https://doi.org/10.1002/hbm.22492 CrossRefGoogle ScholarPubMed
Enkavi, A. Z., Eisenberg, I. W., Bissett, P. G., Mazza, G. L., MacKinnon, D. P., Marsch, L. A.Poldrack, R. A. (2019). Large-scale analysis of test-retest reliabilities of self-regulation measures. Proceedings of the National Academy of Sciences of the United States of America, 116(12), 54725477. https://doi.org/10.1073/pnas.1818430116 CrossRefGoogle ScholarPubMed
Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A.Gorgolewski, K. J. (2019). fMRIPrep: A robust preprocessing pipeline for functional MRI. Nature Methods, 16(1), 111116. https://doi.org/10.1038/s41592-018-0235-4 CrossRefGoogle ScholarPubMed
Etkin, A., Prater, K., Hoeft, F., Menon, V., & Schatzberg, A. (2010). Failure of anterior cingulate activation and connectivity with the amygdala during implicit regulation of emotional processing in generalized anxiety disorder. American Journal of Psychiatry, 167(5), 545554. https://doi.org/10.1176/appi.ajp.2009.09070931 CrossRefGoogle ScholarPubMed
Fair, D. A., Bathula, D., Nikolas, M. A., & Nigg, J. T. (2012). Distinct neuropsychological subgroups in typically developing youth inform heterogeneity in children with ADHD. Proceedings of the National Academy of Sciences of the United States of America, 109(17), 67696774. https://doi.org/10.1073/pnas.1115365109 CrossRefGoogle ScholarPubMed
Ferri, J., Schmidt, J., Hajcak, G., & Canli, T. (2016). Emotion regulation and amygdala-precuneus connectivity: Focusing on attentional deployment. Cognitive Affective Behavioral Neuroscience, 16(6), 9911002. https://doi.org/10.3758/s13415-016-0447-y CrossRefGoogle ScholarPubMed
Fischer, M., Barkley, R. A., Smallish, L., & Fletcher, K. (2005). Executive functioning in hyperactive children as young adults: Attention, inhibition, response perseveration, and the impact of comorbidity. Developmental Neuropsychology, 27(1), 107133. https://doi.org/10.1207/s15326942dn2701_5 CrossRefGoogle ScholarPubMed
Fitzgerald, J. M., Klumpp, H., Langenecker, S., & Phan, K. L. (2019). Transdiagnostic neural correlates of volitional emotion regulation in anxiety and depression. Depression and Anxiety, 36(5), 453464. https://doi.org/10.1002/da.22859 CrossRefGoogle ScholarPubMed
Fliers, E. A., Franke, B., Lambregts-Rommelse, N. N., Altink, M. E., Buschgens, C. J., Nijhuis-van der Sanden, M. W.Buitelaar, J. K. (2009). Undertreatment of motor problems in children with ADHD. Child and Adolescent Mental Health, 15(2), 8590. https://doi.org/10.1111/j.1475-3588.2009.00538.x CrossRefGoogle ScholarPubMed
Fonov, V., Evans, A. C., Botteron, K., Almli, C. R., McKinstry, R. C., Collins, D. L.Group, B. D. C. (2011). Unbiased average age-appropriate atlases for pediatric studies. Neuroimage, 54(1), 313327. https://doi.org/10.1016/j.neuroimage.2010.07.033 CrossRefGoogle ScholarPubMed
Frodl, T., & Skokauskas, N. (2012). Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatrica Scandinavica, 125(2), 114126. https://doi.org/10.1111/j.1600-0447.2011.01786.x CrossRefGoogle ScholarPubMed
Gilbert, A. R., Keshavan, M. S., Diwadkar, V., Nutche, J., Macmaster, F., Easter, P. C.Rosenberg, D. R. (2008). Gray matter differences between pediatric obsessive-compulsive disorder patients and high-risk siblings: A preliminary voxel-based morphometry study. Neuroscience Letters, 435(1), 4550. https://doi.org/10.1016/j.neulet.2008.02.011 CrossRefGoogle ScholarPubMed
Gioia, G. A., Isquith, P. K., Guy, S. C., & Kenworthy, L. (2000). Test review behavior rating inventory of executive function. Child Neuropsychology, 6(3), 235238.CrossRefGoogle Scholar
Goldfarb, E. V., Chun, M. M., & Phelps, E. A. (2016). Memory-guided attention: Independent contributions of the hippocampus and striatum. Neuron, 89(2), 317324. https://doi.org/10.1016/j.neuron.2015.12.014 CrossRefGoogle ScholarPubMed
Gorka, A. X., Fuchs, B., Grillon, C., & Ernst, M. (2018). Impact of induced anxiety on neural responses to monetary incentives. Social Cognitive and Affective Neuroscience, 13(11), 11111119. https://doi.org/10.1093/scan/nsy082 CrossRefGoogle ScholarPubMed
Green, D., & Payne, S. (2018). Understanding organisational ability and self-regulation in children with developmental coordination disorder. Current Developmental Disorders Reports, 5(1), 3442. https://doi.org/10.1007/s40474-018-0129-2 CrossRefGoogle ScholarPubMed
Groman, S. M., Keistler, C., Keip, A. J., Hammarlund, E., DiLeone, R. J., Pittenger, C.Taylor, J. R. (2019). Orbitofrontal circuits control multiple reinforcement-learning processes. Neuron, 103(4), 734746.e733. https://doi.org/10.1016/j.neuron.2019.05.042 CrossRefGoogle ScholarPubMed
Gross, J. J. (2002). Emotion regulation: Affective, cognitive, and social consequences. Psychophysiology, 39(3), 281291. https://doi.org/10.1017.S0048577201393198 CrossRefGoogle ScholarPubMed
Hare, T. A., Camerer, C. F., & Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science, 324(5927), 646648. https://doi.org/10.1126/science.1168450 CrossRefGoogle ScholarPubMed
Hauser, T. U., Iannaccone, R., Dolan, R. J., Ball, J., Hättenschwiler, J., Drechsler, R.Brem, S. (2017). Increased fronto-striatal reward prediction errors moderate decision making in obsessive-compulsive disorder. Psychological Medicine, 47(7), 12461258. https://doi.org/10.1017/S0033291716003305 CrossRefGoogle ScholarPubMed
Henderson, S., Sudgen, D., & Barnett, A. (2007). Movement assessment battery for children: 2nd Edition (MABC-2). London, United Kingdom.Google Scholar
Hoogman, M., Bralten, J., Hibar, D. P., Mennes, M., Zwiers, M. P., Schweren, L. S. J.Franke, B. (2017). Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: A cross-sectional mega-analysis. Lancet Psychiatry, 4(4), 310319. https://doi.org/10.1016/S2215-0366(17)30049-4 CrossRefGoogle ScholarPubMed
Hulvershorn, L. A., Mennes, M., Castellanos, F. X., Di Martino, A., Milham, M. P., Hummer, T. A.Roy, A. K. (2014). Abnormal amygdala functional connectivity associated with emotional lability in children with attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 53(3), 351361.e351. https://doi.org/10.1016/j.jaac.2013.11.012 CrossRefGoogle ScholarPubMed
Hutcherson, C. A., Plassmann, H., Gross, J. J., & Rangel, A. (2012). Cognitive regulation during decision making shifts behavioral control between ventromedial and dorsolateral prefrontal value systems. Journal of Neuroscience, 32(39), 1354313554. https://doi.org/10.1523/JNEUROSCI.6387-11.2012 CrossRefGoogle ScholarPubMed
Ikemoto, S. (2010). Brain reward circuitry beyond the mesolimbic dopamine system: A neurobiological theory. Neuroscience & Biobehavioral Reviews, 35(2), 129150. https://doi.org/10.1016/j.neubiorev.2010.02.001 CrossRefGoogle ScholarPubMed
Kaufmann, T., Alnæs, D., Doan, N. T., Brandt, C. L., Andreassen, O. A., & Westlye, L. T. (2017). Delayed stabilization and individualization in connectome development are related to psychiatric disorders. Nature Neuroscience, 20(4), 513515. https://doi.org/10.1038/nn.4511 CrossRefGoogle ScholarPubMed
Klanker, M., Feenstra, M., & Denys, D. (2013). Dopaminergic control of cognitive flexibility in humans and animals. Frontiers in Neuroscience, 7, 201. https://doi.org/10.3389/fnins.2013.00201 CrossRefGoogle ScholarPubMed
Lake, E. M. R., Finn, E. S., Noble, S. M., Vanderwal, T., Shen, X., Rosenberg, M. D.Constable, R. T. (2019). The functional brain organization of an individual allows prediction of measures of social abilities transdiagnostically in autism and attention-deficit/hyperactivity disorder. Biological Psychiatry, 86(4), 315326. https://doi.org/10.1016/j.biopsych.2019.02.019 CrossRefGoogle ScholarPubMed
Le, T. M., Zhang, S., Zhornitsky, S., Wang, W., & Li, C. R. (2020). Neural correlates of reward-directed action and inhibition of action. Cortex, 123, 4256. https://doi.org/10.1016/j.cortex.2019.10.007 CrossRefGoogle ScholarPubMed
Lenzi, F., Cortese, S., Harris, J., & Masi, G. (2018). Pharmacotherapy of emotional dysregulation in adults with ADHD: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 84, 359367. https://doi.org/10.1016/j.neubiorev.2017.08.010 CrossRefGoogle ScholarPubMed
Matthews, M., Nigg, J. T., & Fair, D. A. (2014). Attention deficit hyperactivity disorder. Current Topics in Behavioral Neurosciences, 16, 235266. https://doi.org/10.1007/7854_2013_249 CrossRefGoogle ScholarPubMed
McLeod, K. R., Langevin, L. M., Dewey, D., & Goodyear, B. G. (2016). Atypical within- and between-hemisphere motor network functional connections in children with developmental coordination disorder and attention-deficit/hyperactivity disorder. Neuroimage Clinical, 12, 157164. https://doi.org/10.1016/j.nicl.2016.06.019 CrossRefGoogle ScholarPubMed
Mohanty, R., Sethares, W. A., Nair, V. A., & Prabhakaran, V. (2020). Rethinking measures of functional connectivity via feature extraction. Scientific Reports, 10(1), 1298. https://doi.org/10.1038/s41598-020-57915-w CrossRefGoogle ScholarPubMed
Morawetz, C., Bode, S., Derntl, B., & Heekeren, H. R. (2017). The effect of strategies, goals and stimulus material on the neural mechanisms of emotion regulation: A meta-analysis of fMRI studies. Neuroscience & Biobehavioral Reviews, 72, 111128. https://doi.org/10.1016/j.neubiorev.2016.11.014 CrossRefGoogle ScholarPubMed
Murphy, K., & Fox, M. D. (2017). Towards a consensus regarding global signal regression for resting state functional connectivity MRI. Neuroimage, 154, 169173. https://doi.org/10.1016/j.neuroimage.2016.11.052 CrossRefGoogle ScholarPubMed
Nebel, M. B., Eloyan, A., Nettles, C. A., Sweeney, K. L., Ament, K., Ward, R. E.Mostofsky, S. H. (2015). Intrinsic visual-motor synchrony correlates with social deficits in autism. Biological Psychiatry, 79(8), 633641. https://doi.org/10.1016/j.biopsych.2015.08.029 CrossRefGoogle ScholarPubMed
Nigg, J. T. (2000). On inhibition/disinhibition in developmental psychopathology: Views from cognitive and personality psychology and a working inhibition taxonomy. Psychological Bulletin, 126(2), 220246.CrossRefGoogle Scholar
Nigg, J. T. (2005). Neuropsychologic theory and findings in attention-deficit/hyperactivity disorder: The state of the field and salient challenges for the coming decade. Biological Psychiatry, 57(11), 14241435. https://doi.org/10.1016/j.biopsych.2004.11.011 CrossRefGoogle ScholarPubMed
Norman, L. J., Carlisi, C. O., Christakou, A., Murphy, C. M., Chantiluke, K., Giampietro, V.Rubia, K. (2018). Frontostriatal dysfunction during decision making in attention-deficit/hyperactivity disorder and obsessive-compulsive disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(8), 694703. https://doi.org/10.1016/j.bpsc.2018.03.009 Google ScholarPubMed
Ochsner, K. N., Silvers, J. A., & Buhle, J. T. (2012). Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251(1), E124. https://doi.org/10.1111/j.1749-6632.2012.06751.x 1251.CrossRefGoogle ScholarPubMed
Olsen, C. M. (2011). Natural rewards, neuroplasticity, and non-drug addictions. Neuropharmacology, 61(7), 11091122. https://doi.org/10.1016/j.neuropharm.2011.03.010 CrossRefGoogle ScholarPubMed
Parkes, L., Fulcher, B., Yücel, M., & Fornito, A. (2018). An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. Neuroimage, 171, 415436. https://doi.org/10.1016/j.neuroimage.2017.12.073 CrossRefGoogle ScholarPubMed
Passarotti, A. M., Sweeney, J. A., & Pavuluri, M. N. (2010). Differential engagement of cognitive and affective neural systems in pediatric bipolar disorder and attention deficit hyperactivity disorder. Journal of the International Neuropsychological Society, 16(1), 106117. https://doi.org/10.1017/S1355617709991019 CrossRefGoogle ScholarPubMed
Picó-Pérez, M., Radua, J., Steward, T., Menchón, J. M., & Soriano-Mas, C. (2017). Emotion regulation in mood and anxiety disorders: A meta-analysis of fMRI cognitive reappraisal studies. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 79(Pt B), 96104. https://doi.org/10.1016/j.pnpbp.2017.06.001 CrossRefGoogle ScholarPubMed
Posner, J., Kass, E., & Hulvershorn, L. (2014). Using stimulants to treat ADHD-related emotional lability. Current Psychiatry Reports, 16(10), 478. https://doi.org/10.1007/s11920-014-0478-4 CrossRefGoogle ScholarPubMed
Posner, J., Maia, T. V., Fair, D., Peterson, B. S., Sonuga-Barke, E. J., & Nagel, B. J. (2011). The attenuation of dysfunctional emotional processing with stimulant medication: An fMRI study of adolescents with ADHD. Psychiatry Research, 193(3), 151160. https://doi.org/10.1016/j.pscychresns.2011.02.005 CrossRefGoogle ScholarPubMed
Posner, J., Rauh, V., Gruber, A., Gat, I., Wang, Z., & Peterson, B. S. (2013). Dissociable attentional and affective circuits in medication-naïve children with attention-deficit/hyperactivity disorder. Psychiatry Research, 213(1), 2430. https://doi.org/10.1016/j.pscychresns.2013.01.004 CrossRefGoogle ScholarPubMed
Power, J. D., Plitt, M., Gotts, S. J., Kundu, P., Voon, V., Bandettini, P. A.Martin, A. (2018). Ridding fMRI data of motion-related influences: Removal of signals with distinct spatial and physical bases in multiecho data. Proceedings of the National Academy of Sciences of the United States of America, 115(9), E2105E2114. https://doi.org/10.1073/pnas.1720985115 Google ScholarPubMed
Power, J. D., Schlaggar, B. L., & Petersen, S. E. (2015). Recent progress and outstanding issues in motion correction in resting state fMRI. Neuroimage, 105, 536551. https://doi.org/10.1016/j.neuroimage.2014.10.044 CrossRefGoogle ScholarPubMed
Power, T. G., Olivera, Y. A., Hill, R. A., Beck, A. D., Hopwood, V., Garcia, K. S.Hughes, S. O. (2016). Emotion regulation strategies and childhood obesity in high risk preschoolers. Appetite, 107, 623627. https://doi.org/10.1016/j.appet.2016.09.008 CrossRefGoogle ScholarPubMed
Pruim, R. H., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J. K., & Beckmann, C. F. (2015). ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage, 112, 267277. https://doi.org/10.1016/j.neuroimage.2015.02.064 CrossRefGoogle ScholarPubMed
Rahimi-Golkhandan, S., Steenbergen, B., Piek, J. P., & Wilson, P. H. (2014). Deficits of hot executive function in developmental coordination disorder: Sensitivity to positive social cues. Human Movement Science, 38, 209224. https://doi.org/10.1016/j.humov.2014.09.008 CrossRefGoogle ScholarPubMed
Reich, W., Weltner, Z., & Herjanic, B. (1997). The diagnostic interview for children and adolescents-IV. Multi-Health Systems, North Tonawanda, NY.Google Scholar
Rodriguez, M. C., Wade, T. J., Veldhuizen, S., Missiuna, C., Timmons, B., & Cairney, J. (2019). Emotional and behavioral problems in 4- and 5-year old children with and without motor delays. Frontiers in Pediatrics, 7, 474. https://doi.org/10.3389/fped.2019.00474 CrossRefGoogle ScholarPubMed
Rohr, C. S., Dreyer, F. R., Aderka, I. M., Margulies, D. S., Frisch, S., Villringer, A.Okon-Singer, H. (2015). Individual differences in common factors of emotional traits and executive functions predict functional connectivity of the amygdala. Neuroimage, 120, 154163. https://doi.org/10.1016/j.neuroimage.2015.06.049 CrossRefGoogle ScholarPubMed
Rohr, C. S., Kamal, S., & Bray, S. (2020). Building functional connectivity neuromarkers of behavioral self-regulation across children with and without autism spectrum disorder. Developmental Cognitive Neuroscience, 41, 100747. https://doi.org/10.1016/j.dcn.2019.100747 CrossRefGoogle ScholarPubMed
Rohr, C. S., Okon-Singer, H., Craddock, R. C., Villringer, A., & Margulies, D. S. (2013). Affect and the brain’s functional organization: A resting-state connectivity approach. PLoS One, 8(7), e68015. https://doi.org/10.1371/journal.pone.0068015 CrossRefGoogle ScholarPubMed
Rohr, C. S., Villringer, A., Solms-Baruth, C., van der Meer, E., Margulies, D. S., & Okon-Singer, H. (2016). The neural networks of subjectively evaluated emotional conflicts. Human Brain Mapping, 37(6), 22342246. https://doi.org/10.1002/hbm.23169 CrossRefGoogle ScholarPubMed
Rosen, P. J., Walerius, D. M., Fogleman, N. D., & Factor, P. I. (2015). The association of emotional lability and emotional and behavioral difficulties among children with and without ADHD. Attention Deficit Hyperactivity Disorder, 7(4), 281294. https://doi.org/10.1007/s12402-015-0175-0 CrossRefGoogle ScholarPubMed
Rosenberg, M. D., Finn, E. S., Scheinost, D., Papademetris, X., Shen, X., Constable, R. T.Chun, M. M. (2016). A neuromarker of sustained attention from whole-brain functional connectivity. Nature Neuroscience, 19(1), 165171. https://doi.org/10.1038/nn.4179 CrossRefGoogle ScholarPubMed
Schmidt, L., Tusche, A., Manoharan, N., Hutcherson, C., Hare, T., & Plassmann, H. (2018). Neuroanatomy of the vmPFC and dlPFC predicts individual differences in cognitive regulation during dietary self-control across regulation strategies. Journal of Neuroscience, 38(25), 57995806. https://doi.org/10.1523/JNEUROSCI.3402-17.2018 CrossRefGoogle ScholarPubMed
Schoemaker, M. M., Niemeijer, A. S., Flapper, B. C., & Smits-Engelsman, B. C. (2012). Validity and reliability of the movement assessment battery for children-2 checklist for children with and without motor impairments. Developmental Medicine & Child Neurology, 54(4), 368375. https://doi.org/10.1111/j.1469-8749.2012.04226.x CrossRefGoogle ScholarPubMed
Schuetze, M., Cho, I. Y. K., Vinette, S., Rivard, K. B., Rohr, C. S., Ten Eycke, K.Bray, S. L. (2019). Learning with individual-interest outcomes in autism spectrum disorder. Developmental Cognitive Neuroscience, 38, 100668. https://doi.org/10.1016/j.dcn.2019.100668 CrossRefGoogle ScholarPubMed
Schuetze, M., Rohr, C. S., Dewey, D., McCrimmon, A., & Bray, S. (2017). Reinforcement learning in autism spectrum disorder. Frontiers in Psychology, 8, 378. https://doi.org/10.3389/fpsyg.2017.02035 2035.CrossRefGoogle ScholarPubMed
Shaw, P., Stringaris, A., Nigg, J., & Leibenluft, E. (2014). Emotion dysregulation in attention deficit hyperactivity disorder. The American Journal of Psychiatry, 171(3), 276293. https://doi.org/10.1176/appi.ajp.2013.13070966 CrossRefGoogle ScholarPubMed
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H.Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23, S208S219. https://doi.org/Doi10.1016/J.Neuroimage.2004.07.051 CrossRefGoogle ScholarPubMed
Sobanski, E., Banaschewski, T., Asherson, P., Buitelaar, J., Chen, W., Franke, B.et al. (2010). Emotional lability in children and adolescents with attention deficit/hyperactivity disorder (ADHD): Clinical correlates and familial prevalence. Journal of Child Psychology and Psychiatry, 51(8), 915923. https://doi.org/10.1111/j.1469-7610.2010.02217.x CrossRefGoogle ScholarPubMed
Sonuga-Barke, E. J., Sergeant, J. A., Nigg, J., & Willcutt, E. (2008). Executive dysfunction and delay aversion in attention deficit hyperactivity disorder: Nosologic and diagnostic implications. Child and Adolescent Psychiatric Clinics of North America, 17(2), 367384. https://doi.org/10.1016/j.chc.2007.11.008 ix.CrossRefGoogle ScholarPubMed
Spencer, T. J., Faraone, S. V., Surman, C. B., Petty, C., Clarke, A., Batchelder, H.Biederman, J. (2011). Toward defining deficient emotional self-regulation in children with attention-deficit/hyperactivity disorder using the child behavior checklist: A controlled study. Postgraduate Medicine, 123(5), 5059. https://doi.org/10.3810/pgm.2011.09.2459 CrossRefGoogle ScholarPubMed
Stringaris, A., & Goodman, R. (2009). Mood lability and psychopathology in youth. Psychological Medicine, 39(8), 12371245. https://doi.org/10.1017/S0033291708004662 CrossRefGoogle ScholarPubMed
Tal Saban, M., Ornoy, A., & Parush, S. (2014). Executive function and attention in young adults with and without developmental coordination disorder--a comparative study. Research in Developmental Disabilities, 35(11), 26442650. https://doi.org/10.1016/j.ridd.2014.07.002 CrossRefGoogle ScholarPubMed
Uddin, L. Q., Dajani, D. R., Voorhies, W., Bednarz, H., & Kana, R. K. (2017). Progress and roadblocks in the search for brain-based biomarkers of autism and attention-deficit/hyperactivity disorder. Translational Psychiatry, 7(8), e1218. https://doi.org/10.1038/tp.2017.164 CrossRefGoogle ScholarPubMed
van den Heuvel, M., Jansen, D. E., Reijneveld, S. A., Flapper, B. C., & Smits-Engelsman, B. C. (2016). Identification of emotional and behavioral problems by teachers in children with developmental coordination disorder in the school community. Research in Developmental Disabilities, 51-52, 4048. https://doi.org/10.1016/j.ridd.2016.01.008 CrossRefGoogle ScholarPubMed
van Dongen, E. V., von Rhein, D., O'Dwyer, L., Franke, B., Hartman, C. A., Heslenfeld, D. J.Buitelaar, J. (2015). Distinct effects of ASD and ADHD symptoms on reward anticipation in participants with ADHD, their unaffected siblings and healthy controls: A cross-sectional study. Molecular Autism, 6, 48. https://doi.org/10.1186/s13229-015-0043-y CrossRefGoogle ScholarPubMed
Van Waelvelde, H., Peersman, W., Lenoir, M., & Smits Engelsman, B. C. (2007). The reliability of the movement assessment battery for children for preschool children with mild to moderate motor impairment. Clinical Rehabilitation, 21(5), 465470. https://doi.org/10.1177/0269215507074052 CrossRefGoogle ScholarPubMed
von Rhein, D., Cools, R., Zwiers, M. P., van der Schaaf, M., Franke, B., Luman, M.Buitelaar, J. (2015). Increased neural responses to reward in adolescents and young adults with attention-deficit/hyperactivity disorder and their unaffected siblings. Journal of the American Academy of Child and Adolescent Psychiatry, 54(5), 394402. https://doi.org/10.1016/j.jaac.2015.02.012 CrossRefGoogle Scholar
Vossel, S., Weidner, R., Moos, K., & Fink, G. R. (2016). Individual attentional selection capacities are reflected in interhemispheric connectivity of the parietal cortex. Neuroimage, 129, 148158. https://doi.org/10.1016/j.neuroimage.2016.01.054 CrossRefGoogle ScholarPubMed
Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. The Psychological Corporation, San Antonio, TX.Google Scholar
Weiland, B. J., Welsh, R. C., Yau, W. Y., Zucker, R. A., Zubieta, J. K., & Heitzeg, M. M. (2013). Accumbens functional connectivity during reward mediates sensation-seeking and alcohol use in high-risk youth. Drug and Alcohol Dependence, 128(1-2), 130139. https://doi.org/10.1016/j.drugalcdep.2012.08.019 CrossRefGoogle ScholarPubMed
Werlen, E., Shin, S. L., Gastambide, F., Francois, J., Tricklebank, M. D., Marston, H. M.Walton, M. E. (2019). Amphetamine disrupts haemodynamic correlates of prediction errors in nucleus accumbens and orbitofrontal cortex. Neuropsychopharmacology, 45, 793803. https://doi.org/10.1038/s41386-019-0564-8 CrossRefGoogle ScholarPubMed
Wilson, B. N., Kaplan, B. J., Crawford, S. G., Campbell, A., & Dewey, D. (2000). Reliability and validity of a parent questionnaire on childhood motor skills. American Journal of Occupational Therapy, 54(5), 484493. https://doi.org/10.5014/ajot.54.5.484 CrossRefGoogle ScholarPubMed