Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T02:18:24.018Z Has data issue: false hasContentIssue false

Prescribed performance LOS guidance-based dynamic surface path following control of surface vessel with position and heading errors constraint

Published online by Cambridge University Press:  18 April 2023

Zhipeng Shen
Affiliation:
College of Marine Electrical Engineering, Dalian Maritime University, Dalian, People's Republic of China
Ang Li
Affiliation:
College of Marine Electrical Engineering, Dalian Maritime University, Dalian, People's Republic of China
Li Li
Affiliation:
College of Marine Electrical Engineering, Dalian Maritime University, Dalian, People's Republic of China
Haomiao Yu*
Affiliation:
College of Marine Electrical Engineering, Dalian Maritime University, Dalian, People's Republic of China
*
*Corresponding author. Haomiao Yu; E-mail: [email protected]

Abstract

Concentrating on a surface vessel with input saturation, model uncertainties and unknown disturbances, a path following the adaptive backstepping control method based on prescribed performance line-of-sight (PPLOS) guidance is proposed. First, a prescribed performance asymmetric modified barrier Lyapunov function (PPAMBLF) is used to design the PPLOS and the heading controller, which make the path following position and heading errors meet the prescribed performance requirements. Furthermore, the backstepping and dynamic surface technique (DSC) are used to design the path following controller and the adaptive assistant systems are constructed to compensate the influence of input saturation. In addition, neural networks are introduced to approximate model uncertainties, and the adaptive laws are designed to estimate the bounds of the neural network approximation errors and unknown disturbances. According to the Lyapunov stability theory, all signals are semi-globally uniformly ultimately bounded. Finally, a 76$\,{\cdot }\,$2 m supply surface vessel is used for simulation experiments. The experimental results show that although the control inputs are limited, the control system can still converge quickly, and both position and heading errors can be limited to the prescribed performance requirements.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Institute of Navigation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bechlioulis, C. P. and Rovithakis, G. A. (2008). Prescribed performance adaptive control of SISO feedback linearizable systems with disturbances. 2008 Mediterr. Conf. Control Autom. - Conf. Proceedings, MED’08, 1035–1040. Available at: https://doi.org/10.1109/MED.2008.4601971.CrossRefGoogle Scholar
Chen, M., Ge, S. S. and Ren, B. (2011). Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica, 47(3), 452465. doi:10.1016/j.automatica.2011.01.025CrossRefGoogle Scholar
Chen, Z. T., Chen, Q., Sun, M. X. and He, X. X. (2020). Full state constrained output feedback control for rigid spacecraft. Control Theory and Applications, 37(2), 355364. doi:10.7641/CTA.2019.80657Google Scholar
Del-Rio-Rivera, F., Ramirez, V., Donaire, A. and Ferguson, J. (2020). Robust trajectory tracking control for fully actuated marine surface vehicle. IEEE Access, 8, 223897223904. doi:10.1109/ACCESS.2020.3042091CrossRefGoogle Scholar
Du, J., Hu, X., Krstić, M. and Sun, Y. (2016). Robust dynamic positioning of ships with disturbances under input saturation. Automatica, 73, 207214. doi:10.1016/j.automatica.2016.06.020CrossRefGoogle Scholar
Fossen, T. I. and Berge, S. P. (1997). Nonlinear vectorial backstepping design for global exponential tracking of marine vessels in the presence of actuator dynamics. Proceedings of the IEEE Conference on Decision and Control. Vol. 5, 4237–4242. Available at: https://doi.org/10.1109/cdc.1997.649499.CrossRefGoogle Scholar
Fossen, T. I. and Lekkas, A. M. (2017). Direct and indirect adaptive integral line-of-sight path-following controllers for marine craft exposed to ocean currents. International Journal of Adaptive Control and Signal Processing, 31(4), 445463. doi:10.1002/acs.2550CrossRefGoogle Scholar
Fossen, T. I. and Strand, J. P. (1999). Passive nonlinear observer design for ships using Lyapunov methods: full-scale experiments with a supply vessel. Automatica, 35(1), 316. doi:10.1016/S0005-1098(98)00121-6CrossRefGoogle Scholar
Hou, Q., Ma, L., Ding, S., Yang, X. and Chen, X. (2020). Composite finite-time straight-line path-following control of an underactuated surface vessel. Journal of the Franklin Institute, 357(16), 1149611517. doi:10.1016/j.jfranklin.2019.07.020CrossRefGoogle Scholar
Jia, Z., Hu, Z. and Zhang, W. (2019). Adaptive output-feedback control with prescribed performance for trajectory tracking of underactuated surface vessels. ISA Transactions, 95, 1826. doi:10.1016/j.isatra.2019.04.035CrossRefGoogle ScholarPubMed
Lekkas, A. M. and Fossen, T. I. (2014). Integral LOS path following for curved paths based on a monotone cubic hermite spline parametrization. IEEE Transactions on Control Systems Technology, 22(6), 22872301. doi:10.1109/TCST.2014.2306774CrossRefGoogle Scholar
Li, Y. and Zheng, J. (2020). Research on real-time obstacle avoidance planning for an unmanned surface vessel based on the grid cell mechanism. Journal of Navigation, 73(6), 13581371. doi:10.1017/S0373463320000338CrossRefGoogle Scholar
Li, J., Du, J., Sun, Y. and Lewis, F. L. (2019). Robust adaptive trajectory tracking control of underactuated autonomous underwater vehicles with prescribed performance. International Journal of Robust Nonlinear Control, 29(14), 46294643. doi:10.1002/rnc.4659CrossRefGoogle Scholar
Liang, J., Zhang, J., Ma, Y. and Zhang, C.-Y. (2017). Derivation of bathymetry from high-resolution optical satellite imagery and USV sounding data. Marine Geodesy, 40, 466479. doi:10.1080/01490419.2017.1370044CrossRefGoogle Scholar
Liu, L., Wang, D. and Peng, Z. (2016a). ESO-based line-of-sight guidance law for straight line path following with exact sideslip compensation. Proceedings of the World Congress on Intelligent Control and Automation, 2016-September, 677–681. Available at: https://doi.org/10.1109/WCICA.2016.7578426.CrossRefGoogle Scholar
Liu, L., Wang, D., Peng, Z. and Wang, H. (2016b). Predictor-based LOS guidance law for path following of underactuated marine surface vehicles with sideslip compensation. Ocean Engineering, 124, 340348. doi:10.1016/j.oceaneng.2016.07.057CrossRefGoogle Scholar
Liu, C., Chen, C. L. P., Zou, Z. and Li, T. (2017). Adaptive NN-DSC control design for path following of underactuated surface vessels with input saturation. Neurocomputing, 267, 466474. doi:10.1016/j.neucom.2017.06.042CrossRefGoogle Scholar
Lyu, H. and Yin, Y. (2019). COLREGS-constrained real-time path planning for autonomous ships using modified artificial potential fields. Journal of Navigation, 72(3), 588608. doi:10.1017/S0373463318000796CrossRefGoogle Scholar
Naus, K., Wa̧ż, M., Szymak, P., Gucma, L. and Gucma, M. (2021). Assessment of ship position estimation accuracy based on radar navigation mark echoes identified in an electronic navigational chart. Measurement, 169, 108630. doi:10.1016/j.measurement.2020.108630CrossRefGoogle Scholar
Nie, J., Wang, H., Lu, X., Lin, X., Sheng, C., Zhang, Z. and Song, S. (2021). Finite-time output feedback path following control of underactuated MSV based on FTESO. Ocean Engineering, 224, 108660. doi:10.1016/j.oceaneng.2021.108660CrossRefGoogle Scholar
Qiu, Y., Liang, X., Dai, Z., Cao, J. and Chen, Y. (2015). Backstepping dynamic surface control for a class of non-linear systems with time-varying output constraints. IET Control Theory and Applications, 9(15), 23122319. doi:10.1049/iet-cta.2015.0019CrossRefGoogle Scholar
Rutkowski, G. (2021). Analysis of a practical method for estimating the ship's best possible speed when passing under bridges or other suspended obstacles. Ocean Engineering, 225, 108790. doi:10.1016/j.oceaneng.2021.108790CrossRefGoogle Scholar
Shen, Z., Zhang, X., Zhang, N. and Guo, G. (2018). Recursive sliding mode dynamic surface output feedback control for ship trajectory tracking based on neural network observer. Control Theory and Applications, 35(8), 10921100. doi:10.7641/CTA.2018.70456Google Scholar
Shen, Z., Bi, Y., Wang, Y. and Guo, C. (2020a). MLP neural network-based recursive sliding mode dynamic surface control for trajectory tracking of fully actuated surface vessel subject to unknown dynamics and input saturation. Neurocomputing, 377, 103112. doi:10.1016/j.neucom.2019.08.090CrossRefGoogle Scholar
Shen, Z., Wang, Y., Yu, H. and Guo, C. (2020b). Finite-time adaptive tracking control of marine vehicles with complex unknowns and input saturation. Ocean Engineering, 198, 106980. doi:10.1016/j.oceaneng.2020.106980CrossRefGoogle Scholar
Specht, M., Stateczny, A., Specht, C., Widźgowski, S., Lewicka, O. and Wiśniewska, M. (2021). Concept of an innovative autonomous unmanned system for bathymetric monitoring of shallow waterbodies (INNOBAT system). Energies, 14, 5370. doi:10.3390/en14175370CrossRefGoogle Scholar
Stateczny, A., Specht, C., , Specht, M., Brčić, D., Jugović, A., Widźgowski, S., Wiśniewska, M. and Lewicka, O. (2021). Study on the positioning accuracy of GNSS/INS systems supported by DGPS and RTK receivers for hydrographic surveys. Energies, 14, 7413. doi:10.3390/en14217413CrossRefGoogle Scholar
Swaroop, D., Hedrick, J. K., Yip, P. P. and Gerdes, J. C. (2000). Dynamic surface control design for a class of nonlinear systems. IEEE Trans. Automat. Contr., 45(10), 18931899. doi:10.1109/TAC.2000.880994CrossRefGoogle Scholar
Wang, N. and Su, S. F. (2021). Finite-time unknown observer-based interactive trajectory tracking control of asymmetric underactuated surface vehicles. IEEE Transactions on Control Systems Technology, 29(2), 794803. doi:10.1109/TCST.2019.2955657CrossRefGoogle Scholar
Wang, N., Sun, Z., Yin, J., Zou, Z. and Su, S. F. (2019). Fuzzy unknown observer-based robust adaptive path following control of underactuated surface vehicles subject to multiple unknowns. Ocean Engineering, 176, 5764. doi:10.1016/j.oceaneng.2019.02.017CrossRefGoogle Scholar
Wang, Y., Shen, Z., Wang, Q. and Yu, H. (2021). Predictor-based practical fixed-time adaptive sliding mode formation control of a time-varying delayed uncertain fully-actuated surface vessel using RBFNN. ISA Transactions. doi:10.1016/j.isatra.2021.06.021Google ScholarPubMed
Xie, W., Reis, J., Cabecinhas, D. and Silvestre, C. (2020). Design and experimental validation of a nonlinear controller for underactuated surface vessels. Nonlinear Dynamics, 102(4), 25632581. doi:10.1007/s11071-020-06058-8CrossRefGoogle Scholar
Xu, J. X. and Jin, X. (2013). State-constrained iterative learning control for a class of MIMO systems. IEEE Transactions on Automatic Control, 58(5), 13221327. doi:10.1109/TAC.2012.2223353CrossRefGoogle Scholar
Xu, X., Pan, W., Huang, Y. and Zhang, W. (2020). Dynamic collision avoidance algorithm for unmanned surface vehicles via layered artificial potential field with collision cone. Journal of Navigation, 73(6), 13061325. doi:10.1017/S0373463320000284CrossRefGoogle Scholar
Yang, Q. and Chen, M. (2016). Adaptive neural prescribed performance tracking control for near space vehicles with input nonlinearity. Neurocomputing, 174, 780789. doi:10.1016/j.neucom.2015.09.099CrossRefGoogle Scholar
Zhang, G., Zhang, X. and Zheng, Y. (2015). Adaptive neural path-following control for underactuated ships in fields of marine practice. Ocean Engineering, 104, 558567. doi:10.1016/j.oceaneng.2015.05.013CrossRefGoogle Scholar
Zhang, G., Li, J., Li, B. and Zhang, X. (2019). Improved integral LOS guidance and path-following control for an unmanned robot sailboat via the robust neural damping technique. Journal of Navigation, 72(6), 13781398. doi:10.1017/S0373463319000353CrossRefGoogle Scholar
Zhang, C., Wang, C., Wei, Y. and Wang, J. (2020). Robust trajectory tracking control for underactuated autonomous surface vessels with uncertainty dynamics and unavailable velocities. Ocean Engineering, 218, 108099. doi:10.1016/j.oceaneng.2020.108099CrossRefGoogle Scholar
Zhao, Z., He, W. and Ge, S. S. (2014). Adaptive neural network control of a fully actuated marine surface vessel with multiple output constraints. IEEE Transactions on Control Systems Technology, 22(4), 15361543. doi:10.1109/TCST.2013.2281211Google Scholar
Zheng, Z. and Feroskhan, M. (2017). Path following of a surface vessel with prescribed performance in the presence of input saturation and external disturbances. IEEE/ASME Transactions on Mechatronics, 22(6), 25642575. doi:10.1109/TMECH.2017.2756110CrossRefGoogle Scholar
Zheng, Z., Huang, Y., Xie, L. and Zhu, B. (2018a). Adaptive trajectory tracking control of a fully actuated surface vessel with asymmetrically constrained input and output. IEEE Transactions on Control Systems Technology, 26(5), 18511859. doi:10.1109/TCST.2017.2728518CrossRefGoogle Scholar
Zheng, Z., Sun, L. and Xie, L. (2018b). Error-constrained LOS path following of a surface vessel with actuator saturation and faults. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(10), 17941805. doi:10.1109/TSMC.2017.2717850CrossRefGoogle Scholar