Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T12:32:29.589Z Has data issue: false hasContentIssue false

Salvage Palmer Amaranth Programs Can Be Effective in Cotton Resistant to Glyphosate, 2,4-D, and Glufosinate

Published online by Cambridge University Press:  20 January 2017

R. M. Merchant*
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794
A. S. Culpepper
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794
P. M. Eure
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794
J. S. Richburg
Affiliation:
Dow AgroSciences, Headland, AL 36345
L. B. Braxton
Affiliation:
Dow AgroSciences, Traveler's Rest, SC 29690
*
Corresponding author's E-mail: [email protected].

Abstract

Glyphosate-resistant Palmer amaranth escaping residual herbicides is difficult to manage in cotton because of its rapid growth and a limited number of effective herbicide options to control emerged plants. An experiment was conducted at two dryland and two irrigated sites in Georgia during 2011 and 2012 to determine if cotton resistant to glyphosate, 2,4-D, and glufosinate could be used to salvage a crop infested with large Palmer amaranth. Three POST herbicide systems, including sequential applications of 2,4-D, sequential applications of 2,4-D plus glufosinate, or 2,4-D followed by (fb) glufosinate, were applied with intervals of 5, 10, or 15 d between POST applications. All three systems were followed by diuron plus MSMA directed at layby. At the dryland sites with high temperatures and drought conditions, no program provided greater than 90% control. However, the 2,4-D plus glufosinate system was at least twice as effective in controlling 20-cm-tall Palmer amaranth and produced at least three times more cotton than the other two systems, when pooled over POST application intervals. Intervals of 10 or 15 d between POST applications were 23 to 27% more effective than a 5-d interval in controlling Palmer amaranth when pooled over POST herbicide systems; yields were nearly twice as much with the 10-d interval compared to 5 d. At the irrigated site, overall weed control was greater with less treatment differences noted. Palmer amaranth that was 20 cm tall at application was controlled 98 to 99%, 92 to 93%, and 81 to 94% by glufosinate plus 2,4-D, 2,4-D fb glufosinate, and 2,4-D fb 2,4-D systems at harvest, respectively. Intervals between POST applications only influenced control by the POST 2,4-D system, and the 10-d interval was more effective than the 5-d interval. Carpetweed, Florida beggarweed, and smallflower morningglory were controlled 99% at harvest by all systems; however, it was noted that control of carpetweed and Florida beggarweed prior to layby was less effective with 2,4-D than systems including glufosinate. In the event of an at-plant residual herbicide failure in fields infested with glyphosate-resistant Palmer amaranth, our research demonstrates that glufosinate plus 2,4-D sequentially applied 10 to 15 d apart followed by a timely layby application controlled the target weeds in cotton with resistance to 2,4-D, glyphosate, and glufosinate.

En algodón y cuando escapa a herbicidas residuales, Amaranthus palmeri resistente a glyphosate es difícil de manejar debido a su rápido crecimiento y al limitado número de opciones de herbicidas efectivos para el control de plantas emergidas. Se realizó un experimento en dos sitios sin riego y en dos sitios con riego en Georgia en 2011 y 2012 para determinar si el algodón resistente a glyphosate, 2,4-D, y glufosinate podría ser usado para salvar a un cultivo infestado con plantas grandes de A. palmeri. Tres sistemas de herbicidas POST, los cuales incluyeron aplicaciones secuenciales de 2,4-D, aplicaciones secuenciales de 2,4-D más glufosinate, o 2,4-D seguido de (fb) glufosinate, fueron aplicados a intervalos de 5, 10 ó 15 d entre aplicaciones POST. Los tres sistemas fueron seguidos por diuron más MSMA dirigido antes del cierre del dosel. En los sitios sin riego, con altas temperaturas y condiciones de sequía, ningún programa brindó control superior a 90%. Sin embargo, el sistema de 2,4-D más glufosinate fue al menos el doble de efectivo controlando A. palmeri de 20 cm de altura y produjo al menos tres veces más algodón que los otros dos sistemas, cuando se promediaron los intervalos de aplicación POST. Los intervalos de 10 ó 15 d entre aplicaciones POST fueron 23 a 27% más efectivos que el intervalo de 5 d para el control de A. palmeri cuando se promediaron los sistemas de herbicidas POST. El rendimiento con el intervalo de 10 d fue casi el doble al compararse con el intervalo de 5 d. En el sitio con riego, el control de malezas fue en general mayor y se notaron menos diferencias entre tratamientos. A. palmeri que tenía 20 cm de altura al momento de aplicación fue controlado 98 a 99%, 92 a 93%, y 81 a 94% con los sistemas glufosinate más 2,4-D, 2,4-D fb glufosinate, y 2,4-D fb 2,4-D, respectivamente al momento de la cosecha. Los intervalos entre aplicaciones POST solamente influenciaron el control de los sistemas POST con 2,4-D, y el intervalo de 10 d fue más efectivo que el de 5 d. Mollugo verticillata, Desmodium tortuosum, y Jacquemontia tamnifolia fueron controlados 99% al momento de la cosecha en todos los sistemas. Sin embargo, se notó que el control de M. verticillata y D. tortuosum antes del cierre del dosel fue menos efectivo con 2,4-D que los sistemas que incluyeron glufosinate. En la eventualidad de una falla en el control residual al momento de la siembra, en campos infestados con A. palmeri resistente a glyphosate, nuestra investigación demuestra que glufosinate más 2,4-D aplicados secuencialmente 10 a 15 d aparte seguidos por una aplicación antes del cierre del dosel controló las malezas deseadas en algodón con resistencia a 2,4-D, glyphosate, y glufosinate.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous (2006) Staple™ product label. Wilmington, DE: E. I. du Pont de Nemours and Company.Google Scholar
Anonymous (2011) Liberty® 280SL product label. Research Triangle Park, NC: Bayer CropScience LP Google Scholar
Beckie, HJ (2011) Herbicide resistance management: focus on glyphosate. Pest Manage Sci 67:10371048 Google Scholar
Botha, GM, Burgos, NR, Alcobar, EA (2012) Efficacy of glufosinate tank mixed with dicamba, tembotrione, or 2,4-D amine for the control of glyphosate-resistant Palmer amaranth. Proc South Weed Sci Soc 65:4 Google Scholar
Branson, JW, Smith, KL, Barrentine, JL (2005) Comparison of trifloxysulfuron and pyrithiobac in glyphosate-resistant and bromoxynil-resistant cotton. Weed Technol 19:404410 Google Scholar
Braxton, LB, Cui, C, Peterson, MA, Richburg, JS, Simpson, DM, Wright, TR (2010) Dow Agrosciences herbicide tolerance traits (DHT) in cotton. Page 35 in Proceedings of the Beltwide Cotton Conference, New Orleans, LA, January 4–7, 2010. Memphis, TN National Cotton Council of America Google Scholar
Carpenter, D, Boutin, C (2010) Sublethal effects of the herbicide glufosinate ammonium on crops and wild plants: short term effects compared to vegetative recovery and plant reproduction. Ecotoxicol 19:13221336 Google Scholar
Chahal, GS, Johnson, WG (2012) Influence of glyphosate or glufosinate combinations with growth regulator herbicides and other agrochemicals in controlling glyphosate-resistant weeds. Weed Technol 26:638643 Google Scholar
Coetzer, E, al-Khalib, K, Peterson, DE (2002) Glufosinate efficacy on Amaranthus species in glufosinate-resistant soybeans (Glycine max). Weed Technol 16:326331 Google Scholar
Collins, G, Whitaker, J, eds (2012) Georgia Cotton Production Guide. Athens, GA: University of Georgia Press. Pp 7–14, 2229, Bulletin CSS-12-01Google Scholar
Craigmyle, BD, Ellis, JM, Bradley, KW (2012) Influence of herbicide programs on weed management in soybean with resistance to glufosinate and 2,4-D. Weed Technol. In press Google Scholar
Culpepper, AS, Grey, TL, Vencill, WK, Kichler, JM, Webster, TM, Brown, SM, York, AC, Davis, JW, Hanna, WW (2006) Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci 54:620626 Google Scholar
Culpepper, AS, Webster, TM, Sosnoskie, LM, York, AC (2010) Glyphosate-resistant Palmer amaranth in the United States. Pages 195204 in Nandula, VK, ed. Glyphosate resistance in crops and weeds: History, development and management. 1st ed. Hoboken, NJ: Wiley.Google Scholar
Culpepper, AS, York, AC (1997) Weed management in no-tillage bromoxynil-tolerant cotton (Gossypium hirsutum). Weed Technol 11:335345 Google Scholar
Everman, WJ, Burke, IC, Allen, JR, Collins, J, Wilcut, JW (2007) Weed control and yield with glufosinate-resistant cotton weed management systems. Weed Technol 21:695701 Google Scholar
Faircloth, WE, Patterson, MG, Monks, CD, Goodman, WR (2001) Weed management programs for glyphosate tolerant cotton. Weed Technol 15:544551 Google Scholar
Fast, BJ, Murdock, SW, Farris, RL, Willis, JB, Murray, DS (2009) Critical timing of Palmer amaranth (Amaranthus palmeri) removal in second-generation glyphosate-resistant cotton. J Cotton Sci 13:32–26Google Scholar
Ferrell, JA, Witt, WW (2002) Comparison of glyphosate and other herbicides for weed control in corn (Zea mays): efficacy and economics. Weed Technol 16:701706 Google Scholar
Frans, R, Talbert, R, Marx, D, Crowley, H (1986) Experimental design techniques for measuring and analyzing plant responses to weed control practices. Pages 2946 in Camper, ND, ed. Research Methods in Weed Science. 3rd ed. Champaign, IL: Southern Weed Science Society Google Scholar
Gardner, AP, York, AC, Jordan, DL, Monks, DW (2006) Management of annual grasses and Amaranthus spp. in glufosinate-resistant cotton. J Cotton Sci 10:328338 Google Scholar
Heap, I (2012) The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed October 1, 2012Google Scholar
Kleifeld, Y, Blumenfeld, T, Herzlinger, G, Graph, S, Buxbaum, H, Bargutti, A (1988) The use of fomesafen for preemergence weed control in cotton. Phytoparasitica 16:133144 Google Scholar
Lancaster, SH, Jordan, DL, Spears, JF, York, AC, Wilcut, JW, Monks, DW, Batts, RB, Brandenburg, RL (2005) Sicklepod (Senna obtusifolia) control and seed production after 2,4-DB applied alone and with fungicides and insecticides. Weed Technol 19:451455 Google Scholar
Morgan, GD, Baumann, PA, Chandler, JM (2001) Competitive impact of Palmer amaranth (Amaranthus palmeri) on cotton (Gossypium hirsutum) development and yield. Weed Technol 15:408412 Google Scholar
Norsworthy, JK, Griffith, GM, Scott, RC, Smith, KL, Oliver, LR (2008) Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol 22:108113 Google Scholar
Price, AJ, Balkcom, KS, Culpepper, AS, Kelton, JA, Nichols, RL, Schomberg, H (2011) Glyphosate-resistant Palmer amaranth: a threat to conservation tillage. J Soil Water Conserv 66:265275 CrossRefGoogle Scholar
Richburg, JS, Wright, JR, Braxton, LB, Robinson, AE, inventors; Dow Agrosciences, assignee (2012) July 12. Increased tolerance of DHT-enabled plants to auxinic herbicides resulting from moiety differences in auxinic molecule structures. U.S. patent 13,345,236Google Scholar
Robinson, AP, Simpson, DM, Johnson, WG (2012) Summer annual weed control with 2,4-D and glyphosate. Weed Technol 26:657660 Google Scholar
Seifert-Higgins, S, Arnevik, CL (2012) Development of weed management recommendations for dicamba tolerant soybean. Proc South Weed Sci Soc 65:266 Google Scholar
Shaw, DR, Arnold, JC (2002) Weed control from herbicide combinations with glyphosate. Weed Technol 16:16 CrossRefGoogle Scholar
Smith, DT, Baker, RV, Steele, GL (2000) Palmer amaranth (Amaranthus palmeri) impacts on yield, harvesting, and ginning in dryland cotton (Gossypium hirsutum). Weed Technol 24:234243 Google Scholar
Sosnoskie, LM, Culpepper, AS (2012) Changes in cotton weed management practices following the development of glyphosate-resistant Palmer amaranth. Page 1520 in Proceedings of the 2012 Beltwide Cotton Conference, Orlando, FL, January 3–6, 2012. Memphis, TN National Cotton Council of America Google Scholar
Sosnoskie, LM, Kichler, JM, Wallace, RD, Culpepper, AS (2011) Multiple resistance in Palmer amaranth to glyphosate and pyrithiobac confirmed in Georgia. Weed Sci 59:321325 Google Scholar
Steckel, LE (2012) The double-edged sword of preemergence herbicides. Page 1519 in Proceedings of the Beltwide Cotton Conference, Orlando, FL, January 3–6, 2012. Memphis, TN National Cotton Council of America Google Scholar
Steckel, LE, Main, CL, Ellis, AT, Mueller, TC (2008) Palmer amaranth (Amaranthus palmeri) in Tennessee has low-level glyphosate resistance. Weed Technol 22:119123 Google Scholar
Wise, AM, Grey, TL, Prostko, EP, Vencill, WK, Webster, TM (2009) Establishing the geographical distribution of acetolactate synthase resistance of Palmer amaranth (Amaranthus palmeri) accessions in Georgia. Weed Technol 23:214220 Google Scholar
Whitaker, JR, York, AC, Jordan, DL, Culpepper, AS (2011) Weed management with glyphosate- and glufosinate-based systems in PHY 485 WRF cotton. Weed Technol 25:183191 Google Scholar