Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T16:46:22.722Z Has data issue: false hasContentIssue false

Glyphosate Dose Affected Control of Field Dodder (Cuscuta campestris) in the Tropics

Published online by Cambridge University Press:  20 January 2017

Shawn M. Hock
Affiliation:
College of Natural and Applied Sciences, University of Guam, UOG Station, Mangilao, Guam 96923
Greg Wiecko
Affiliation:
College of Natural and Applied Sciences, University of Guam, UOG Station, Mangilao, Guam 96923
Stevan Z. Knezevic*
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska Northeast Research and Extension Center, 57905-866 Road, Concord, NE 68728
*
Corresponding author's E-mail: [email protected]

Abstract

Field and greenhouse experiments were conducted in 2005 and 2006 in Guam to evaluate the effects of glyphosate on field dodder control and to describe glyphosate dose–response curves on selected ornamental plants grown with and without dodder infestation. Visual quality of dodder-free plants decreased with increasing dose of glyphosate. The most sensitive species was king's mantle, whereas the most tolerant was hibiscus. The values for the effective dose for a 10% reduction in visual quality (ED10) of glyphosate were 800, 280, 1,250, 370, 590, 830, 660, and 170 g ai/ha for dodder-free croton, allamanda, hibiscus, paper gardenia, ixora, duranta, schefflera, and king's mantle, respectively. However, dodder-infested plants were less tolerant to glyphosate because of the confounded stress from both the parasite and herbicide. Field dodder parasitizing ornamental plants could be adequately controlled on all ornamental species at a dose of about 140 g/ha of glyphosate.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bewick, T. A., Binning, L. K., and Balke, N. E. 1991. Absorption and translocation of glyphosate by carrot infected by swamp dodder. J. Am. Soc. Hortic. Sci. 116:10351039.Google Scholar
Bewick, T. A., Binning, L. K., and Dana, M. N. 1988. Post-attachment control of swamp dodder (Cuscuta gronovii) in cranberry (Vaccinium macrocarpon) and carrot (Daucus carota). Weed Technol. 2:166169.Google Scholar
Cudney, D. W., Orloff, S. B., and Reints, J. S. 1992. An integrated weed management for the control of dodder (Cuscuta indecora) in alfalfa (Medicago sativa). Weed Technol. 6:603606.Google Scholar
Dawson, J. H. 1984. Control of Cuscuta in alfalfa—a review. Pages 188199. in Parker, C., Musselman, L. J., Polhill, R. M., and Wilson, A. K., editors. Proceedings of the 3rd International Symposium on Parasitic Weeds. Aleppo, Syria International Center for Agricultural Research in Dry Areas (ICARDA).Google Scholar
Dawson, J. H. 1987. Cuscuta (Convolvulaceae) and its control. Pages 137149. in. Proceedings of the 4th International Symposium on Parasitic Flowering Plants. Marburg, Germany Phillips University.Google Scholar
Dawson, J. H. 1989a. Established forage alfalfa (Medicago sativa) tolerates glyphosate and SC-0224 applied to control dodder (Cuscuta spp.). Weed Technol. 3:560565.Google Scholar
Dawson, J. H. 1989b. Dodder (Cuscuta spp.) control in established alfalfa (Medicago sativa) with glyphosate and SC-0224. Weed Technol. 3:552559.Google Scholar
Dawson, J. H. 1990a. Dodder (Cuscuta spp.) control with dinitroaniline herbicides in alfalfa (Medicago sativa). Weed Technol. 4:341348.Google Scholar
Dawson, J. H. 1990b. Dodder (Cuscuta spp.) control in newly seeded alfalfa (Medicago sativa) with glyphosate. Weed Technol. 4:880885.Google Scholar
Dawson, J. H., Musselman, L. J., Wolswinkel, P., and Dorr, I. 1994. Biology and control of Cuscuta. Rev. Weed Sci. 6:265317.Google Scholar
Dorr, I. 1987. The haustorium of Cuscuta—new structural results. Pages 163170. in. Proceedings of 4th International Symposium on Parasitic Flowering Plants. Marburg, Germany Phillips University.Google Scholar
Fer, A. 1984. Physiological approach to the chemical control of Cuscuta: experiments with 14C-labelled herbicides. Pages 164174. in Parker, C., Musselman, L. J., Polhill, R. M., and Wilson, A. K., editors. Proceedings of the 3rd International Symposium on Parasitic Weeds. Aleppo, Syria International Center for Agricultural Research in Dry Areas (ICARDA).Google Scholar
Holm, L., Doll, J., Holm, E., Panch, J., and Herberger, J. 1997. World Weeds: Natural Histories and Distribution. New York J. Wiley. 1129.Google Scholar
Horowitz, M., Gevelberg, A., and Bucsbaum, H. 1983. Dodder seeds: characteristics and implications for the dissemination and control of the parasite. Hassadeh 63:11761179.Google Scholar
Hutchison, J. M. and Ashton, F. M. 1980. Germination of field dodder (Cuscuta campestris). Weed Sci. 28:330333.Google Scholar
King, L. J. 1966. Weeds of the World, Biology and Control. New York International Science. 4551.Google Scholar
Knezevic, S., Ritz, C., and Streibig, J. C. 2007. Utilizing R software package for dose–response studies: the concept and data analysis. Weed Technol. 21:840848.CrossRefGoogle Scholar
Knezevic, S. Z., Sikkema, P. H., Tardif, F., Hamill, A. S., Chandler, K., and Swanton, C. J. 1998. Biologically effective dose and selectivity of RPA 201772 for preemergence weed control in corn (Zea mays). Weed Technol. 12:670676.Google Scholar
Koch, A. M., Binder, C., and Sanders, I. R. 2004. Does the generalist parasitic plant Cuscuta campestris selectively forage in heterogeneous plant communities. New Phytol. 162:147155.Google Scholar
Liu, Z. Q. and Fer, A. 1990. Influence d'un parasite (Cuscuta lupuliformis Krock.) sur la redistribution de deux herbicides systèmiques appliqués sur une légumineuse (Phaseolus aureus Roxb.). C. R. Acad. Sci. Serie III Sci. Vie. 311:333339. [In French].Google Scholar
Mishra, J. S., Bhan, M., Moorthy, B. T. S., and Yaduraju, N. T. 2004. Bio-efficacy of herbicides against Cuscuta in blackgram [Vigna mungo (L.) Hepper]. Indian J. Weed Sci. 36:278279.Google Scholar
Nadler-Hassar, T., Goldshmidt, A., Rubin, B., and Scmuel, S. 2004. Glyphosate inhibits the translocation of green fluorescent protein and sucrose from a transgenic tobacco host to Cuscuta campestris Yunk. Planta (Berl.) 219:790796.Google Scholar
Nir, E., Rubin, B., and Zharasov, S. W. 1996. On the biology and selective control of field dodder (Cuscuta campestris). Pages 809816. in Moreno, M. T., Cuberu, J. I., Berner, D., Joel, D., Musselman, L. J., and Parker, C., editors. Advances in Parasitic Plant Research. Junta de AndaluciaCordoba, Spain Dirección General de Investigación Agraria.Google Scholar
Orloff, S. B. and Cudney, D. W. 1987. Control of dodder in alfalfa with dinitroaniline herbicides. Proc. West. Soc. Weed Sci. 40:98103.Google Scholar
Parker, C. 1991. Protection of crops against parasitic weeds. Crop Prot. 10:622.Google Scholar
Parker, C. and Riches, C. R. 1993. Parasitic Weeds of the World: Biology and Control. Wallingford, UK CABI. 183223.Google Scholar
Press, M. C., Graves, J. D., and Stewart, G. R. 1990. Physiology of the interaction of angiosperm parasites and their higher plant hosts. Plant Cell Environ. 13:91104.Google Scholar
Ritz, C. and Streibig, J. C. 2005. Bioassay analysis using R. J. Stat. Softw 12:122.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose–response relationships. Weed Technol. 19:218227.Google Scholar
Shlevin, E. and Golan, D. 1982. Selective control of dodder in carrots. Phytoparasitica 10:267.Google Scholar
Streibig, J. C., Rudemo, M., and Jensen, J. E. 1993. Dose–response curves and statistical models. Pages 2955. in Streibig, J. C. and Kudsk, P., editors. Herbicide Bioassays. Boca Raton, FL CRC.Google Scholar
Tsivion, Y. 1979. The Regulation of the Association of the Parasitic Plant Cuscuta campestris with Its Hosts. Ph.D Dissertation. Jerusalem, Israel The Hebrew University of Jerusalem. 49.Google Scholar