Published online by Cambridge University Press: 11 August 2021
A field study was conducted in Mississippi to determine the effect of reduced dicamba rates on sweetpotato crop tolerance and storage root yield, simulating off-target movement or sprayer tank contamination. Treatments included a nontreated control and four rates of dicamba [70 g ae ha−1 (1/8×), 35 g ae ha−1 (1/16×), 8.65 g ae ha−1 (1/64×), and 1.09 g ae ha−1 (1/512×)] applied either 3 d before transplanting (DBP) or 1, 3, 5, or 7 wk after transplanting (WAP). An additional treatment consisted of 560 g ae ha−1 (1×) dicamba applied 3 DBP. Crop injury ratings were taken 1, 2, 3, and 4 wk after treatment (WAT). Across application timings, predicted sweetpotato plant injury 1, 2, 3, and 4 WAT increased from 3T to 22%, 3% to 32%, 2% to 58%, and 1% to 64% as dicamba rate increased from 0 to 70 g ha−1 (1/8×), respectively. As dicamba rate increased from 1/512× to 1/8×, predicted No. 1 yield decreased from 127% to 55%, 103% to 69%, 124% to 31%, and 124% to 41% of the nontreated control for applications made 1, 3, 5, and 7 WAP, respectively. Similarly, as dicamba rate increased from 1/512× to 1/8×, predicted marketable yield decreased from 123% to 57%, 107% to 77%, 121% to 44%, and 110% to 53% of the nontreated control for applications made 1, 3, 5, and 7 WAP, respectively. Dicamba residue (5.3 to 14.3 parts per billion) was detected in roots treated with 1/16× or 1/8× dicamba applied 5 or 7 WAP and 1/64× dicamba applied 7 WAP with the highest residue detected in roots harvested from sweetpotato plants treated at 7 WAP. Collectively, care should be taken to avoid sweetpotato exposure to dicamba especially at 1/8× and 1/16× rates during the growing season.
Associate Editor: Peter J. Dittmar, University of Florida