Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T08:48:46.516Z Has data issue: false hasContentIssue false

Effects of Clomazone on Biosynthesis of Geosmin by Streptomyces tendae and Penicillium expansion

Published online by Cambridge University Press:  12 June 2017

Christopher P. Dionigi*
Affiliation:
U.S. Dep. Agric, Agric. Res. Serv., South. Reg. Res. Ctr., 1100 Robert E. Lee Blvd., P.O. Box 19687, New Orleans, LA 70179

Abstract

Cultures of Streptomyces tendae grown on Actinomyces medium containing clomazone contained less geosmin 48 h after inoculation than untreated controls, suggesting a possible inhibition of reactions prior to sesquiterpenoid biosynthesis. However, exposure to clomazone increased geosmin accumulation in S. tendae cultures grown on Hickey-Tresner medium and in cultures of the fungus Penicillium expansum. Additionally, clomazone increased accumulation of a sesquiterpenoid tentatively identified as a eudesmol in S. tendae, indicating possible point(s) of inhibition subsequent to sesquiterpenoid biosynthesis. Geosmin biosynthesis was induced by transferring cultures of S. tendae inoculated on Actinomyces medium to Hickey-Tresner medium 24 h after inoculation. When harvested at 48 h, geosmin biosynthesis-induced-cultures exposed to clomazone contained more geosmin than untreated controls, indicating that response of a single taxon to clomazone can be rapidly altered by changing medium composition.

Type
Special Topics
Copyright
Copyright © 1994 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Ajello, L., Georg, L. K., Kaplan, W., and Kaufman, L. 1963. Laboratory Manual for Medical Mycology. Page G59 in U.S. Dep. Health, Educ, and Welfare. Public Health Serv., Communicable Disease Ctr., Atlanta 22, GA.Google Scholar
2. Al-Nimri, L. F. and Coolbaugh, R. C. 1990. Inhibition of abscisic acid biosynthesis in Cercospora rosicola by triarimol. J. Plant Growth Regul. 9:221225.CrossRefGoogle Scholar
3. Bentley, R. and Meganathan, R. 1981. Geosmin and methylisoborneol biosynthesis in Streptomyces, evidence for a isoprenoid pathway and its absence in non-differentiating isolates. FEBS Lett. 125:220222.CrossRefGoogle ScholarPubMed
4. Dionigi, C. P. and Grimm, C. C. 1993. Co-induction of geosmin and hydroxylated sesquiterpene biosynthesis in Streptomyces tendae . Page 310 in N70, Proc. Am. Soc. Microbiol. Google Scholar
5. Dionigi, C. P. 1993. Physiological strategies to control earthy/musty off-flavor metabolite synthesis in channel catfish aquaculture systems. Pages 322375 in Spanier, A. M., Okai, H., Tamura, M., eds. Molecular Approaches to the Study of Food Quality. Am. Chem. Soc. Symp. Ser. 528, Washington, DC.CrossRefGoogle Scholar
6. Dionigi, C. P., Millie, D. F., Spanier, A. M., and Johnsen, P. B. 1992b. Spore and geosmin production by Streptomyces tendae on several media. J. Agric. Food Chem. 40:122125.CrossRefGoogle Scholar
7. Duke, S. O., Paul, R. N., Becerril, J. M., and Schmidt, J. H. 1991. Clomazone causes accumulation of sesquiterpenoids in cotton (Gossypium hirsutum L.). Weed Sci. 39:339346.CrossRefGoogle Scholar
8. Duke, S. O. and Paul, R. N. 1986. Effects of dimethazone (FMC 57020) on chloroplast development. I. Ultrastructural effects in cowpea (Vigna unguiculata L.) primary leaves. Pestic. Biochem. Physiol. 25:110.CrossRefGoogle Scholar
9. Duke, S. O., Kenyon, W. H., and Paul, R. N. 1985. FMC 57020 effects on chloroplasts development in pitted morningglory (Ipomoea lacunosa) cotyledons. Weed Sci. 33:786794.CrossRefGoogle Scholar
10. Duke, S. O. and Kenyon, W. H. 1986. Effects of dimethazone (FMC 57020) on chloroplast development II. Pigment synthesis and photosynthetic function in cowpea (Vigna unguiculata L.) primary leaves. Pestic. Biochem. Physiol. 25:1118.CrossRefGoogle Scholar
11. Grafe, U. 1989, Autoregulatory secondary metabolites from Actinomycete. Pages 75135 in Shapiro, S., ed. Regulation of Secondary Metabolism in Actinomycete. CRC Press, Boca Raton, FL.Google Scholar
12. Harvey, D. 1991. Aquaculture Situation and Outlook Report, September 1991. U.S. Dep. Agric., AQUA-7, Washington, DC.Google Scholar
13. Hickey, R. T. and Tresner, H. D. 1952. A Cobalt-containing medium for sporulation of Streptomyces species. J. Bacteriol. 64:981.CrossRefGoogle ScholarPubMed
14. Johnsen, P. B. and Dionigi, C. P. 1993. Physiological approaches to the selective control of off-flavor metabolite production. J. Appl. Aquacult. 2: (in press).Google Scholar
15. Lutzow, M., Beyer, P., and Kleining, H. 1991. The herbicide command does not inhibit the prenyl diphosphate-forming enzymes in plastids. Z. Naturforsch. 45c:856858.Google Scholar
16. Maga, J. A. 1987. Musty/earthy aromas. Food Rev. Int. 3:269284.CrossRefGoogle Scholar
17. Mattheis, J. P. and Roberts, R. G. 1992. Identification of geosmin as a volatile metabolite of Penicillium expansum . Appl. Environ. Microbiol. 58:31703172.CrossRefGoogle ScholarPubMed
18. McIntosh, M. S. 1983. Analysis of combined experiments. Agron. J. 75:153155.CrossRefGoogle Scholar
19. Naes, H., Utkilen, H. C., and Post, A. F. 1989. Geosmin production in the cyanobacterium Oscillatoria brevis . Arch. Microbiol. 151:407410.CrossRefGoogle Scholar
20. Norman, M. A., Liebl, R. A., and Widholm, J. M. 1990. Site of clomazone action in tolerant-soybean and susceptible-cotton photomixotrophic cell suspension cultures. Plant Physiol. 94:704709.CrossRefGoogle ScholarPubMed
21. Norman, M. A., Liebl, R. A., and Widholm, J. M. 1990. Uptake and metabolism of clomazone in tolerant-soybean and susceptible-cotton photomixotrophic cell suspension cultures. Plant Physiol. 92:777784.CrossRefGoogle ScholarPubMed
22. Raper, K. B. and Thorn, C. 1949. A Manual of Penicillia . Williams and Wilkins, Baltimore.Google Scholar
23. Rademacker, W. 1989. Gibberellins: Metabolic pathways and inhibitors of biosynthesis. Pages 127145 in Mets, L. and Thiel, A., eds. Target Sites o Herbicide Action. CRC Press, Boca Raton, FL.Google Scholar
24. Sandman, G. and Boger, P. 1986a. Interference of dimethazone with formation of terpenoid compounds. Z. Naturforsch. 41c:729732.CrossRefGoogle Scholar
25. Sandman, G. and Boger, P. 1986b. Interconversion of prenyl pyrophosphates and subsequent reactions in the presence of FMC 57020. Z. Naturforsch. 42c:803807.Google Scholar
26. Vencill, W. K., Hatzois, K. K., and Wilson, H. P. 1990. Absorption translocation and metabolism of 14C-clomazone in soybean (Glycine max) and three Amaranthus weed species. J. Plant Growth Regul. 9:127132.CrossRefGoogle Scholar
27. Wan, J. K. and Hatzois, K. K. 1992. Pretreatment with bleaching herbicides alleviates the light-induced inhibition of maize 3-hydroxy-3-methylglutaryl-Coenzyme A reductase activity. Pestic. Biochem. Physiol. 42:5463.Google Scholar
28. Weimer, M. R., Balke, N. E., and Buhler, D. D. 1992a. Herbicide clomazone does not inhibit in vitro geranylgeranyl synthesis from mevelonate. Plant Physiol. 98:427432.CrossRefGoogle ScholarPubMed
29. Weimer, M. R., Balke, N. E., and Buhler, D. D. 1992b. Absorption and metabolism of clomazone by suspension-cultured cells of soybean and velvetleaf. Pestic. Biochem. Physiol. 42:4353.CrossRefGoogle Scholar
30. Weimer, M. R., Buhler, D. D., and Balke, N. E. 1991. Clomazone selectivity: absence of differential uptake, translocation, or detoxication. Weed Sci. 37:285289.Google Scholar
31. Weston, L. A. and Barrett, M. 1989. Tolerance to tomato (Lycopersicon esculentum) and bell pepper (Capsicum annum) to clomazone. Weed Sci. 37:285289.CrossRefGoogle Scholar
32. Westberg, D. E., Oliver, L. R., and Frans, R. E. 1989. Weed control with clomazone alone and other herbicides. Weed Technol. 3:678685.CrossRefGoogle Scholar