Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-15T01:30:49.429Z Has data issue: false hasContentIssue false

Acetolactate synthase-inhibiting herbicides on imidazolinone-tolerant rice

Published online by Cambridge University Press:  20 January 2017

Jeffrey A. Masson
Affiliation:
Department of Plant Pathology and Crop Physiology, Louisiana State University Ag Center, Baton Rouge, LA 70803

Abstract

The cross-tolerance of imidazolinone-tolerant (IMI-tolerant) rice to various acetolactate synthase (ALS)-inhibiting herbicides at one and two times labeled rates was studied. The IMI-tolerant rice is cross-tolerant to imazaquin, imazapyr, nicosulfuron, pyrithiobac, thifensulfuron plus tribenuron, and triasulfuron; is partially tolerant to imazamethabenz and metsulfuron; and is susceptible to chlorimuron, flumetsulam, imazamox, imazapic, primisulfuron, and rimsulfuron. In the greenhouse, IMI-tolerant rice injury with 70 and 140 g ai ha−1 imazethapyr was 17 and 34%, respectively, 28 DAT. Both rates of imazapyr, imazaquin, rimsulfuron, nicosulfuron, thifensulfuron plus tribenuron, and pyrithiobac, and 25 g ai ha−1 triasulfuron, injured rice the same as imazethapyr. Red rice control with 70 and 140 g ha−1 imazethapyr was 97 and 98%, respectively, 28 DAT. At label and two times the label rate, all imidazolinones, nicosulfuron, and primisulfuron controlled red rice equivalent to imazethapyr. Red rice control with 28 g ai ha−1 rimsulfuron was similar to control with 70 and 140 g ha−1 imazethapyr 28 DAT. In the field, barnyardgrass control with two times the labeled rate of imazamox, imazapic, imazapyr, imazaquin, imazamethabenz, rimsulfuron, and nicosulfuron was equal or greater than control with imazethapyr 30 DAT; however, at two times the labeled rate of imazamox, imazapic, and rimsulfuron, injury was greater than imazethapyr. Of all the herbicides tested, only nicosulfuron, imazaquin, and imazapyr offer a combination of low rice injury and high red rice control compared with imazethapyr.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahrens, W. H., ed. 1994. Herbicide Handbook. 7th ed. Champaign, IL: Weed Science Society of America. pp. 5658.Google Scholar
Ahrens, W. H., ed. 1998. Herbicide Handbook Supplement. 7th ed. Champaign, IL: Weed Science Society of America. pp. 5658.Google Scholar
Baldwin, F. L., Huey, B. A., and Morris, G. L. 1977. Distribution of three weed species in Arkansas rice fields. Proc. South. Weed Sci. Soc. 30:398.Google Scholar
Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem. 270:17,38117,385.Google Scholar
Cohn, M. A. and Hughes, J. A. 1981. Seed dormancy in red rice (Oryza sativa) I. Effect of temperature on dry-afterripening. Weed Sci. 29:402404.Google Scholar
Croughan, T. P. 1994. Application of tissue culture techniques to the development of herbicide resistant rice. Louisiana Ag. 3:2526.Google Scholar
Devine, M. D. and Eberlein, C. V. 1997. Physiological, biochemical, and molecular aspects of herbicide resistance based on altered target sites. Pages 159185 In Roe, R. M., Burton, J. D., and Kuhr, R. J., eds. Herbicide Activity: Toxicology, Biochemistry, and Molecular Biology. Amsterdam: IOS Press.Google Scholar
Grichar, W. J. 1994. Spiny amaranth (Amaranthus spinosus L.) control in peanut (Arachis hypogaea L.). Weed Technol. 8:199202.Google Scholar
Griffin, J. L., Baker, J. B., Dunand, R. T., and Sonnier, E. A. 1986. Red Rice Control in Rice and Soybeans in Southwest Louisiana. Baton Rouge, LA: Louisiana State University Agriculture Center Publ. 776.Google Scholar
Hart, R. G., Lignowski, E. M., and Taylor, F. R. 1991. Imazethapyr herbicide. Pages 247256 In Shaner, D. L. and O’Conner, S. L., eds. The Imidazolinone Herbicides. Boca Raton, FL: CRC Press.Google Scholar
Hart, S. E. and Wax, L. M. 1996. Dicamba antagonizes grass weed control with imazethapyr by reducing foliar absorption. Weed Technol. 10:828834.Google Scholar
Hartnett, M. E., Chui, C. F., Mauvais, C. J., McDevitt, R. E., Knowlton, S., Smith, J. K., Falco, S. C., and Mazur, B. J. 1990. Herbicide-resistant plants carrying mutated acetolactate synthase genes. Pages 459473 In Green, M. B., LeBaron, H. M., and Moberg, W. K., eds. Managing Resistance to Agrochemicals. From Fundamental Research to Practical Strategies. Washington, DC: American Chemical Society.Google Scholar
Hattori, J., Brown, D., Mourad, G., Labbé, H., Ouellet, T., Sunohara, G., Rutledge, R., King, J., and Miki, B. 1995. An acetohydroxy acid synthase mutant reveals a single site involved in multiple herbicide resistance. Mol. Gen. Genet. 246:419425.Google Scholar
Hattori, J., Rutledge, R., Labbé, H., Brown, D., Sunohara, G., Miki, B. 1992. Multiple resistance to sulfonylureas and imidazolinones conferred by an acetohydroxy acid synthase gene with separate mutations for selective resistance. Mol. Gen. Genet. 232:167173.Google Scholar
Jordan, D. and Sanders, D. E. 1999. Pest management. Baton Rouge, LA: Louisiana State University AgCenter, Louisiana Rice Production Handbook. Publ. 2321. pp. 3750.Google Scholar
Khodayari, K., Smith, R. J. Jr., and Black, H. L. 1987. Red rice (Oryza sativa) control with herbicide treatments in soybeans (Glycine max). Weed Sci. 35:127129.Google Scholar
Klingaman, T. E., King, C. A., and Oliver, L. R. 1992. Effect of application rate, weed species, and weed stage of growth on imazethapyr activity. Weed Sci. 40:227232.Google Scholar
Liscano, J. F., Williams, B. J., and Croughan, T. P. 1999. Barnyardgrass (Echinochloa crus-galli) control in dry-seeded imidazolinone tolerant rice. Proc. South. Weed Sci. Soc. 52:13.Google Scholar
Masson, J. A., Webster, E. P., and Morris, S. N. 1999. Evaluation of imazethapyr on imidazolinone-resistant rice. Proc. South. Weed Sci. Soc. 52:18.Google Scholar
Mourad, G. and King, J. 1989. Effect of four classes of herbicides on growth and acetolactate synthase activity in several variants of Arabidopsis thaliana . Planta 188:491497.Google Scholar
Richburg, J. S. III, Wilcut, J. W., and Wehtje, G. R. 1993. Toxicity of imazethapyr to purple (Cyperus rotundus) and yellow nutsedges (Cyperus esculentus). Weed Technol. 7:900905.Google Scholar
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase-inhibitor herbicides. Pages 83139 In Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: Lewis Publishers.Google Scholar
Sathasivan, K., Haughan, G. W., and Murai, N. 1990. Nucleotide sequence of a mutant acetolactate synthase gene from imidazolinone resistant Arabidopsis thaliana var. Columbia. Nucleic Acids Res. 18:2188.Google Scholar
Sathasivan, K., Haughan, G. W., and Murai, N. 1991. Molecular basis of imidazolinone herbicide resistance in Arabidopsis thaliana var. Columbia. Plant Physiol. 97:10441050.Google Scholar
Sonnier, E. A., Baker, J. B., and White, L. M. III. 1982. Cultural management experiment. Baton Rouge, LA: Louisiana State University Rice Experimental Station Annual Progress Report 74. pp. 234240.Google Scholar
Webster, E. P. and Baldwin, F. L. 1998. Weed control systems for imidazolinone-rice. Proc. Rice Tech. Work. Group 27:215.Google Scholar
Wiersma, P. A., Schiemann, M. G., Condie, J. A., Crosby, W. L., and Maloney, M. M. 1989. Isolation, expression, and phylogenetic inheritance of an acetolactate synthase gene from Brassica napus. Mol. Gen. Genet. 219:413420.Google Scholar