Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-01T09:00:17.621Z Has data issue: false hasContentIssue false

Nonlinear Regression Analysis of Herbicide Absorption Studies

Published online by Cambridge University Press:  20 January 2017

Andrew R. Kniss*
Affiliation:
Department of Plant Sciences, University of Wyoming, Laramie, WY 82071
Joseph D. Vassios
Affiliation:
Department of Bioagricultural Sciences and Pest Management, Colorado State University, Ft. Collins, CO 80523
Scott J. Nissen
Affiliation:
Department of Bioagricultural Sciences and Pest Management, Colorado State University, Ft. Collins, CO 80523
Christian Ritz
Affiliation:
University of Copenhagen, Department of Basic Sciences & Environment, DK-1871 Frederiksberg C, Denmark
*
Corresponding author's E-mail: [email protected]

Abstract

Although foliar herbicide absorption has been studied intensively, there is currently no standardized method for data analysis when evaluating herbicide absorption over time. Most peer-reviewed journals require the treatment structure of data be incorporated in the analysis; however, many herbicide absorption studies published in the past 5 yr do not account for the time structure of the experiment. Herbicide absorption studies have been presented in a variety of ways, making it difficult to compare results among studies. The objective of this article is to propose possible nonlinear models to analyze herbicide absorption data and to provide a stepwise framework so that researchers may standardize the analysis method in this important research area. Asymptotic regression and rectangular hyperbolic models with similar parameterizations are proposed, so that the maximum herbicide absorption and absorption rate may be adequately modeled and statistically compared among treatments. Adoption of these models for herbicide absorption analysis over time will provide a standardized method making comparison of results within and among studies more practical.

Type
Special Topics
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Belles, D., Shaner, D., Westra, P., and Brunk, G. 2006. Comparison of efficacy, absorption and translocation of three glyphosate formulations on velvetleaf (Abutilon theophrasti). Pest Manag. Sci. 62:11771181.Google Scholar
Bukun, B., Gaines, T. A., Nissen, S. J., Westra, P., Brunk, G., Shaner, D. L., Sleugh, B. B., and Peterson, V. F. 2009. Aminopyralid and clopyralid absorption and translocation in Canada thistle (Cirsium arvense). Weed Sci. 57:1015.Google Scholar
Bukun, B., Lindenmayer, R. B., Nissen, S. J., Westra, P., Shaner, D. L., and Brunk, G. 2010. Absorption and translocation of aminocyclopyrachlor and aminocyclopyrachlor-methyl ester in Canada thistle (Cirsium arvense). Weed Sci. 58:96102.Google Scholar
Burke, I. C., Koger, C. H., Reddy, K. N., and Wilcut, J. W. 2007. Reduced translocation is the cause of antagonism of glyphosate by MSMA in browntop millet (Brachiaria ramosa) and Palmer amaranth (Amaranthus palmerii). Weed Technol. 21:166170.Google Scholar
Burnham, K. P. and Anderson, D. R. 1998. Model Selection and Inference: A Practical Information-Theoretic Approach. New York Springer. 353 p.Google Scholar
Cousens, R. 1985. A simple model relating yield loss to weed density. Ann. Appl. Biol. 107:239252.Google Scholar
Cousens, R. 1988. Misinterpretations of results in weed research through inappropriate use of statistics. Weed Res. 28:281289.Google Scholar
Currie, D. J. 1982. Estimating Michaelis-Menten parameters: bias, variance and experimental design. Biometrics. 38:907919.Google Scholar
Dodds, D. M., Reynolds, D. B., Massey, J. H., Smith, M. C., and Koger, C. H. 2007. Effect of adjuvant and urea ammonium nitrate on bispyribac efficacy, absorption, and translocation in barnyardgrass (Echinochloa crus-galli), II: absorption and translocation. Weed Sci. 55:406411.Google Scholar
Everman, W. J., Mayhew, C. R., Burton, J. D., York, A. C., and Wilcut, J. W. 2009a. Absorption, translocation, and metabolism of C-14-glufosinate in glufosinate-resistant corn, goosegrass (Eleusine indica), large crabgrass (Digitaria sanguinalis), and sicklepod (Senna obtusifolia). Weed Sci. 57:15.Google Scholar
Everman, W. J., Thomas, W. E., Burton, J. D., York, A. C., and Wilcut, J. W. 2009b. Absorption, translocation, and metabolism of glufosinate in transgenic and nontransgenic cotton, Palmer amaranth (Amaranthus palmeri), and pitted morningglory (Ipomoea lacunosa). Weed Sci. 57:357361.Google Scholar
Frihauf, J., Stahlman, P. W., and Al-Khatib, K. 2010. Saflufenacil absorption and translocation in winter wheat (Triticum aestivum L.). Pestic. Biochem. Physiol. 98:243247.Google Scholar
Grangeot, M., Chauvel, B., and Gauvrit, C. 2006. Spray retention, foliar uptake and translocation of glufosinate and glyphosate in Ambrosia artemisiifolia . Weed Res. 46:152162.Google Scholar
Han, A., Ye, Q., Wang, H., Wang, W., and Lu, L. 2009. Absorption, translocation, and residue of C-14-ZJ0273 in oilseed rape. J. Agric. Food Chem. 57:43984402.Google Scholar
Hatterman-Valenti, H. M., Pitty, A., and Owen, M.D.K. 2006. Effect of environment on giant foxtail (Setaria faberi) leaf wax and fluazifop-P absorption. Weed Sci. 54:607614.Google Scholar
Hennigh, D. S. and Al-Khatib, K. 2010. Response of barnyardgrass (Echinochloa crus-galli), green foxtail (Setaria virdis), longspine sandbur (Cenchrus longispinus), and large crabgrass (Digitaria sanguinalis) to nicosulfuron and rimsulfuron. Weed Sci. 58:189194.Google Scholar
Henry, G., Burton, J., Richardson, R., and Yelverton, F. 2008. Absorption and translocation of foramsulfuron in dallisgrass (Paspalum dilatatum) following preapplication of MSMA. Weed Sci. 56:785788.Google Scholar
Hutchinson, J. T., Langeland, K. A., MacDonald, G. E., and Querns, R. 2010. Absorption and translocation of glyphosate, metsulfuron, and triclopyr in old world climbing fern (Lygodium microphyllum). Weed Sci. 58:118125.Google Scholar
Joy, M., Abit, M., and Al-Khatib, K. 2009. Absorption, translocation, and metabolism of mesotrione in grain sorghum. Weed Sci. 57:563566.Google Scholar
Kniss, A. R. 2006. Tolerance of Common Lambsquarters (Chenopodium album) to Glyphosate. . Laramie, WY University of Wyoming. 92 p.Google Scholar
Kniss, A. R., Lyon, D. M., Vassios, J. D., and Nissen, S. J. 2011. MCPA synergizes imazamox for control of feral rye. Weed Technol. 25:303309.Google Scholar
Lovelace, M. L., Talbert, R. E., Hoagland, R. E., and Scherder, E. F. 2007. Quinclorac absorption and translocation characteristics in quinclorac- and propanil-resistant and -susceptible barnyardgrass (Echinochloa crus-galli) biotypes. Weed Technol. 21:683687.Google Scholar
Lycan, D. W. and Hart, S. E. 2006. Foliar and root absorption and translocation of bispyribac-sodium in cool-season turfgrass. Weed Technol. 20:10151022.Google Scholar
Matocha, M. A., Krutz, L. J., Senseman, S. A., Koger, C. H., Reddy, K. N., and Palmer, E. W. 2006. Spray carrier pH effect on absorption and translocation of trifloxysulfuron in Palmer amaranth (Amaranthus palmerii) and Texasweed (Caperonia palustris). Weed Sci. 54:969973.Google Scholar
Nandula, V. K., Reddy, K. N., Poston, D. H., Rimando, A. M., and Duke, S. O. 2008. Glyphosate tolerance mechanism in Italian ryegrass (Lolium multiflorum) from Mississippi. Weed Sci. 56:344349.Google Scholar
R Development Core Team. 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL: http://www.R-project.org. Accessed: March 10, 2011.Google Scholar
Ritz, C. and Spiess, A. N. 2008. qpcR: an R package for sigmoidal model selection in quantitative real-time polymerase chain reaction analysis. Bioinformatics. 24:15491551.Google Scholar
Ritz, C. and Streibig, J. C. 2005. Bioassay analysis using R. J. Stat. Soft. 12(5):URL: http://www.jstatsoft.org/. Accessed: March 10, 2011.Google Scholar
Schuster, C. L., Al-Khatib, K., and Dille, J. A. 2007. Mechanism of antagonism of mesotrione on sulfonylurea herbicides. Weed Sci. 55:429434.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose–response relationships. Weed Technol. 9:218227.Google Scholar
Shaner, D. L. 2009. Role of translocation as a mechanism of resistance to glyphosate. Weed Sci. 57:118123.Google Scholar
Singh, D. and Singh, M. 2008. Absorption and translocation of glyphosate with conventional and organosilicone adjuvants. Weed Biol. Manag. 8:104111.Google Scholar
Spiess, A. N. and Neumeyer, N. 2010. An evaluation of R 2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach. BMC Pharmacol. 10:6.Google Scholar
Steele, G. L., Senseman, S. A., Sciumbato, A. S., and Chandler, J. M. 2008. Diuron reduces absorption and translocation of glyphosate in sharppod morningglory (Ipomoea cordatotriloba). Weed Technol. 22:414419.Google Scholar
Thomas, W. E., Everman, W. J., Burke, I. C., Koger, C. H., and Wilcut, J. W. 2007. Absorption and translocation of glyphosate and sucrose in glyphosate-resistant cotton. Weed Technol. 21:459464.Google Scholar
Troxer, S. C., Fisher, L. R., Smith, W. D., and Wilcut, J. W. 2007. Absorption, translocation, and metabolism of foliar-applied trifloxysulfuron in tobacco. Weed Technol. 21:421425.Google Scholar
Walker, E. R. and Oliver, L. R. 2008. Translocation and absorption of glyphosate in flowering sicklepod (Senna obtusifolia). Weed Sci. 56:338343.Google Scholar
Weinberg, T., Stephenson, G. R., McLean, M. D., Satchivi, N. M., and Hall, J. C. 2007. Basis for antagonism by sodium bentazon of tritosulfuron toxicity to white bean (Phaseolus vulgaris L.). J. Agric. Food Chem. 55:22682275.Google Scholar
Willingham, S. D., Senseman, S. A., McCauley, G. N., and Chandler, J. M. 2008. Effect of temperature and propanil on penoxsulam efficacy, absorption, and translocation in alligatorweed (Alternanthera philoxeroides). Weed Sci. 56:780784.Google Scholar