Published online by Cambridge University Press: 01 April 1998
A psychophysical analog to cortical receptive-field end-stopping has been demonstrated previously in spatial filters tuned to a wide range of spatial frequencies (Yu & Levi, 1997a). The current study investigated tuning characteristics in psychophysical spatial filter end-stopping. When a D6 (the sixth derivative of a Gaussian) target is masked by a center mask (placed in the putative spatial filter center), two end-zone masks (placed in the filter end-zones) reduce thresholds. This “end-stopping” effect (the reduction of masking induced by end-zone masks) was measured at various spatial frequencies and orientations of end-zone masks. End-stopping reached its maximal strength when the spatial frequency and/or orientation of the end-zone masks matched the spatial frequency and/or orientation of the target and center mask, showing spatial-frequency tuning and orientation tuning. The bandwidths of spatial-frequency and orientation tuning functions decreased with increasing target spatial frequency. At larger orientation differences, however, end-zone masks induced a secondary facilitation effect, which was maximal when the spatial frequency of end-zone masks equated the target spatial frequency. This facilitation effect might be related to certain types of contour and texture perception, such as perceptual pop-out.