Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T21:04:26.660Z Has data issue: false hasContentIssue false

Spatial- and temporal-frequency selectivity as a basis for velocity preference in cat striate cortex neurons

Published online by Cambridge University Press:  02 June 2009

Curtis L. Baker Jr
Affiliation:
Department of Psychology, McGill University, Montreal, Quebec, Canada

Abstract

Measurements were made of the optimal velocity for drifting bar-shaped stimuli to excite striate cortex neurons of the cat. These data were compared to the optimal spatial and temporal frequencies of the same neurons, as determined with drifting sine-wave grating stimuli. A systematic relationship was revealed, whereby those neurons preferring higher velocities of bar motion also preferred lower spatial and higher temporal frequencies of gratings. The optimal bar velocity for a given neuron could be quantitatively predicted from the ratio of that neuron's optimal temporal frequency to its optimal spatial frequency.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelson, E.H., Anderson, C.H., Bergen, J.R., Burt, P.J. & Ogden, J.M. (1984). Pyramid methods in image processing. RCA Engineer 29 (6), 3341.Google Scholar
Baker, C.L. Jr (1988 a). Spatial and temporal determinants of directionally selective velocity preference in cat striate cortex neurons. Journal of Neurophysiology 59, 15571573.CrossRefGoogle ScholarPubMed
Baker, C.L. Jr (1988 b). Spatial- and temporal-frequency tuning characteristics underlying velocity tuning in striate cortex neurons of the cat. Investigative Ophthalmology and Visual Science 29, 330.Google Scholar
Baker, C.L. Jr & Cynader, M.S. (1986). Spatial receptive-field properties of direction-selective neurons in cat striate cortex. Journal of Neurophysiology 55, 11361152.CrossRefGoogle ScholarPubMed
Baker, C.L. Jr & Cynader, M.S. (1988). Space-time separability of direction selectivity in cat striate cortex neurons. Vision Research 28, 239246.CrossRefGoogle ScholarPubMed
Berardi, N., Bisti, S., Cattaneo, A., Fiorentini, A. & Maffei, L. (1982). Correlation between the preferred orientation and spatial frequency of neurones in visual areas 17 and 18 of the cat. Journal of Physiology 323, 603618.CrossRefGoogle ScholarPubMed
Bisti, S., Carmignoto, G., Galli, L. & Maffel, L. (1985). Spatial-frequency characteristics of neurones of area 18 in the cat: dependence on the velocity of the visual stimulus. Journal of Physiology 359, 259268.CrossRefGoogle ScholarPubMed
Burr, D.C. & Ross, J. (1982). Contrast sensitivity at high velocities. Vision Research 22, 479484.CrossRefGoogle ScholarPubMed
Caceci, M.S. & Cacheris, W.P. (1984). Fitting curves to data. Byte 9(5), 340362.Google Scholar
C&bell, F.W. & Robson, J.G. (1968). Application of Fourier analysis to the visibility of gratings. Journal of Physiology 197, 551566.Google Scholar
Duysens, J., Orban, G.A. & Verbeke, O. (1982). Velocity-sensitivity mechanisms in cat visual cortex. Experimental Brain Research 45, 285294.Google ScholarPubMed
Foster, K.H., Gaska, J.P., Nagler, M. & Pollen, D.A. (1985). Spatial- and temporal-frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. Journal of Physiology 365, 331363.CrossRefGoogle ScholarPubMed
Gilbert, C.D. (1977). Laminar differences in receptive-field properties of cells in cat primary visual cortex. Journal of Physiology 268, 391421.CrossRefGoogle ScholarPubMed
Goodwin, A.W. & Henry, G.H. (1978). The influence of stimulus velocity on the responses of single neurons in the striate cortex. Journal of Physiology (London) 277, 467482.CrossRefGoogle ScholarPubMed
Graham, N. (1981). Psychophysics of spatial-frequency channels. In Perceptual Organization, ed. Keebovy, M. & Pomerantz, J.R.Hillsdale: Erlbaum, pp. 135.Google Scholar
Heeger, D.J. (1987). Model for the extraction of image flow. Journal of the Optical Society of America A4, 14551471.CrossRefGoogle ScholarPubMed
Holub, R.A. & Morton-Gibson, M. (1981). Response of visual cortical neurons of the cat to moving sinusoidal gratings: responsecontrast functions and spatiotemporal interactions. Journal of Neurophysiology 46, 12441259.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1962). Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex. Journal of Physiology 160, 106154.CrossRefGoogle ScholarPubMed
Keesey, U. (1972). Flicker and pattern detection: a comparison of thresholds. Journal of the Optical Society of America 62, 446448.CrossRefGoogle ScholarPubMed
Kelly, D.H. (1979). Motion and vision, II: Stabilized spatiotemporal threshold surface. Journal of the Optical Society of America 69, 13401349.CrossRefGoogle ScholarPubMed
Koenderink, J.J. (1984). The structure of images. Biological Cybernetics 50, 363370.CrossRefGoogle ScholarPubMed
Legge, G.E. (1978). Sustained and transient mechanisms in human spatial vision: temporal and spatial properties. Vision Research 18, 6981.CrossRefGoogle ScholarPubMed
Mikami, A., Newsome, W.T. & Wuritz, R.H. (1986). Motion selectivity in macaque visual cortex, II: Spatiotemporal range of directional interactions in MT and VI. Journal of Neurophysiology 55, 13281339.CrossRefGoogle Scholar
Movshon, J.A. (1975). The velocity tuning of single units in cat striate cortex. Journal of Physiology 249, 445468.CrossRefGoogle ScholarPubMed
Movshon, J.A., Thompson, D.D. & Tolhurst, D.J. (1978). Spatial summation in the receptive fields of simple cells in the cat's striate cortex. Journal of Physiology 283, 5377.CrossRefGoogle ScholarPubMed
Movshon, J.A., Thompson, D.D. & Tolhurst, D.J. (1978). Receptive- field organization of complex cells in the cat's striate cortex. Journal of Physiology 283, 7999.CrossRefGoogle ScholarPubMed
Movshon, J.A., Newsome, W.T., Gizzi, M.S. & Levitt, J.B. (1988). Spatiotemporal tuning and speed sensitivity in macaque visual cortical neurons. Investigative Ophthalmology and Visual Science 29, 327.Google Scholar
Nakayama, K. (1985). Biological image motion processing: a review. Vision Research 25, 625660.CrossRefGoogle ScholarPubMed
Nakayama, K. & Silverman, G.H. (1984). Temporal and spatial characteristics of the upper displacement limit for motion in random dots. Vision Research 24, 293299.CrossRefGoogle ScholarPubMed
Orban, G.A., Kennedy, H. & Maes, H. (1981). Response to movement of neurons in areas 17 and 18 of the cat: velocity sensitivity. Journal of Neurophysiology 45, 10431058.CrossRefGoogle ScholarPubMed
Palmer, L.A. & Rosenquist, A.C. (1974). Visual receptive fields of single striate cortical units projecting to the superior colliculus in the cat. Brain Research 67, 2742.CrossRefGoogle Scholar
Pasternak, T. (1986). The role of cortical directional selectivity in detection of motion and flicker. Vision Research 26, 11871194.CrossRefGoogle ScholarPubMed
Pasternak, T. Vision following loss of cortical directional selectivity (in press).Google Scholar
Robson, J.G. (1966). Spatial and temporal contrast sensitivity functions of the visual system. Journal of the Optical Society of America 56, 11411142.CrossRefGoogle Scholar
Tolhurst, D.J. & Movshon, A.T. (1975). Spatial and temporal contrast sensitivity of striate cortical neurones. Nature 257, 674675.CrossRefGoogle ScholarPubMed
Van Doorn, A.J. & Koenderink, J.J. (1982). Spatial properties of the visual detectability of moving spatial white noise. Experimental Brain Research 45, 189195.CrossRefGoogle ScholarPubMed
Watson, A.B. (1987). Efficiency of a model human image code. Vision Research 4, 24012417.Google Scholar
Watson, A.B. & Nachmias, J. (1977). Patterns of temporal interaction in the detection of gratings. Vision Research 17, 893902.CrossRefGoogle ScholarPubMed