Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T08:38:37.111Z Has data issue: false hasContentIssue false

Effects of CNQX, APB, PDA, and kynurenate on horizontal cells of the tiger salamander retina

Published online by Cambridge University Press:  02 June 2009

Xiong-Li Yang
Affiliation:
Cullen Eye Institute, Baylor College of Medicine, Houston
Samuel M. Wu
Affiliation:
Cullen Eye Institute, Baylor College of Medicine, Houston

Abstract

Effects of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), 2-amino-4-phosphonobutyrate (APB), cis-2,3-piperidine dicarboxylic acid (PDA), and kynurenate (KYN) on the depolarizing actions of glutamate and kainate on horizontal cells (HCs) were studied in the larval tiger salamander retina. APB, PDA, and KYN hyperpolarized the HCs, but they failed to block either the actions of glutamate and kainate, or the HC light responses. APB and PDA did not cause membrane polarizations in either rods or cones, suggesting that the HC hyperpolarizations were not mediated by presynaptic actions of these compounds. CNQX, the newly synthesized non-NMDA (N-Methyl-D-Aspartate) receptor antagonist, blocked the HC light responses and the action of kainate, but not that of glutamate. These results suggest that the synaptic receptors in the tiger salamander HCs are probably non-NMDA although extra-synaptic NMDA receptors may exist in these cells.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ariel, M., Lasater, E.M., Mangel, S.C., & Dowling, J.E. (1984). On the sensitivity of H1 horizontal cells of the carp retina to glutamate, aspartate, and their agonists. Brain Research, 295, 179183.CrossRefGoogle ScholarPubMed
Attwell, D., Borges, S., Wu, S.M. & Wilson, M. (1987). Signal clipping by the rod output synapse. Nature 328, 522524.CrossRefGoogle ScholarPubMed
Attwell, D., Mobbs, P., Tessier-Lavigne, M. & Wilson, M. (1987). Neurotransmitters-induced currents in retinal bipolar cells of the axolotl (Ambystoma mexicanum). Journal of Physiology (London) 387, 125161.CrossRefGoogle ScholarPubMed
Blake, J.F., Brown, M.W. & Collingride, G.L. (1988). CNQX blocks acidic amino-acid-induced depolarizations and synaptic components mediated by non-NMDA receptors in rat hippocompal slices. Neuroscience Letters 89, 182186.CrossRefGoogle Scholar
Coleman, P.A., Massey, S.C. & Miller, R.F. (1986). Kynurenic acid distinguishes kainate and quisqualate receptors in the vertebrate retina. Brain Research 381, 172175.CrossRefGoogle ScholarPubMed
Cotman, C.W., Flatman, J.A., Ganong, A.H. & Perkins, M.N. (1986). Effects of excitatory amino-acid antagonists on evoked and spontaneous excitatory potentials in guinea-pig hippocampus. Journal of Physiology 378, 403415.CrossRefGoogle ScholarPubMed
Hals, G., Christensen, B.T., O'Dell, T., Christensen, M. & Shingai, R. (1986). Voltage-clamp analysis of currents produced by glutamate and some glutamate analogues on horizontal cells isolated from the catfish retina. Journal of Neurophysiology 56, 1931.CrossRefGoogle ScholarPubMed
Honroe, T., Davies, S., Drejer, J., Fletcher, E.J., Jacobsen, P., Lodge, D. & Nielsen, F.E. (1988). Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. Science 241, 701703.CrossRefGoogle Scholar
Ishida, A.T., Kaneko, A., & Tachibana, M. (1984). Responses of solitary retinal horizontal cells from Carassius auratus to L-glutamate and related amino acids. Journal of Physiology 348, 255270.CrossRefGoogle ScholarPubMed
Kaneko, A. & Tachibana, M. (1985). Effects of L-glutamate on the anomalous rectifier potassium current in horizontal cells of Carassius auratus retina. Journal of Physiology 358, 169182.CrossRefGoogle ScholarPubMed
Lasater, E.M. & Dowling, J.E. (1982). Carp horizontal cells in culture respond selectively to L-glutamate and its agonists. Proceedings of the National Academy of Sciences of the U.S.A. 79, 936940.CrossRefGoogle ScholarPubMed
Mangel, S.C., Ariel, M., & Dowling, J.E. (1985). Effects of amino-acid antagonists upon the spectral properties of carp horizontal cells: circuitry of the outer retina. Journal of Neuroscience 5, 28392850.CrossRefGoogle ScholarPubMed
Marc, R.E. & Law, D.M. (1981). Uptake of aspartic and glutamic acids by photoreceptors in the goldfish retina. Proc. Natl. Acad. Sci. (USA) 78, 71857189.CrossRefGoogle ScholarPubMed
Mayer, M.L. & Westbrook, G.L. (1987). The physiology of excitatory amino acid in the vertebrate central nervous system. Progress in Neurobiology 28, 197276.CrossRefGoogle ScholarPubMed
Miller, R.F. & Slaughter, M.M. (1985). Excitatory amino-acid receptors in the vertebrate retina. In Retinal Transmitters and Modulators: Models for the Brain, Vol. 2, ed. Morgan, W.W., pp. 123160. CPC Press.Google Scholar
Nawy, S. & Copenhagen, D.R. (1987). Multiple classes of glutamate receptors on the depolarizing bipolar cells in retina. Nature 325, 5658.CrossRefGoogle ScholarPubMed
Nawy, S., Copenhagen, D.R. & Lisberger, S.G. (1988). Evidence for presynaptic effect of APB on the cone pathway in the goldfish retina. Investigative Ophthalmology and Visual Science (Suppl.) 29, 224.Google Scholar
O'dell, T. J. & Christensen, B.N. (1989). A voltage-clamp study of isolated stingray horizontal cell non-NMDA excitatory amino-acid receptors. Journal of Neurophysiology 61, 162172.CrossRefGoogle ScholarPubMed
Perlman, I., Normann, R.A. & Anderson, P. J. (1987). The effects of prolonged superfusions with acidic amino acids and their agonists of field potentials and horizontal cell photoresponses in the turtle retina. Journal of Neurophysiology 57, 10221032.CrossRefGoogle ScholarPubMed
Rowe, J.S. & Ruddock, K.H. (1982 a). Hyperpolarization of retinal horizontal cells by excitatory amino-acid neurotransmitter antagonists. Neuroscience Letters 30, 251256.CrossRefGoogle ScholarPubMed
Rowe, J.S. & Ruddock, K.H. (1982 b). Depolarization of retinal horizontal cells by excitatory amino-acid neurotransmitter agonists. Neuroscience Letters 30, 257262.CrossRefGoogle ScholarPubMed
Sarantis, M., Everett, K. & Attwell, D. (1988). A presynaptic action of glutamate at the cone output synapse. Nature 332, 451453.CrossRefGoogle ScholarPubMed
Schwartz, E.A. (1986). Synaptic transmission in an amphibian retinae during conditions unfavorable for calcium entry into presynaptic terminals. Journal of Physiology 376, 441–428.CrossRefGoogle Scholar
Shiells, R.A., Falk, G. & Naghshineh, S. (1981). Action of glutamate and aspartate analogues on rod horizontal and bipolar cells. Nature 294, 592594.CrossRefGoogle ScholarPubMed
Slaughter, M.M. & Miller, R.F. (1981). 2-Amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science 211, 182185.CrossRefGoogle ScholarPubMed
Slaughter, M.M. & Miller, R.F. (1983 a). An excitatory amino-acid antagonist blocks cone input to sign-conserving second-order retinal neurons. Science 219, 12301232.CrossRefGoogle ScholarPubMed
Slaughter, M.M. & Miller, R.F. (1983 b). Bipolar cells in the mud-puppy retina use an excitatory amino-acid neurotransmitter. Nature 303, 537538.CrossRefGoogle Scholar
Slaughter, M.M. & Miller, R.F. (1983 c). The role of excitatory amino-acid transmitters in the mudpuppy retina: an analysis with kainic acid N-methyl aspartate. Journal of Neuroscience 3, 17011711.CrossRefGoogle ScholarPubMed
Tachibana, M. (1985). Permeability changes induced by L-glutamate in solitary retinal horizontal cells isolated from Carassius auratus. Journal of Physiology 358, 153167.CrossRefGoogle ScholarPubMed
Wu, S.M. (1987). Synaptic connections among retinal neurons in living slices. Journal of Neuroscience Methods 20, 139149.CrossRefGoogle ScholarPubMed
Yang, C.Y. & Yazulla, S. (1988). Light-microscopic localization of putative glycinergic neurons in the larval tiger salamander retina by immunocytochemical and autoradiographic methods. Journal of Comparative Neurology 272, 343357.CrossRefGoogle Scholar
Yang, X.L. & Wu, S.M. (1989). Effects of background illumination on the horizontal cell responses in the tiger salamander retina. Journal of Neuroscience 9, 815827.CrossRefGoogle ScholarPubMed