Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T06:08:01.689Z Has data issue: false hasContentIssue false

Stable Isotopes and the Study of Evolution in Planktonic Foraminifera

Published online by Cambridge University Press:  21 July 2017

Paul N. Pearson*
Affiliation:
Department of Earth Sciences, University of Bristol, Queens Road, Bristol BS8 1RJ, UK
Get access

Extract

The study of evolution by natural selection is difficult because, by definition, it occurs under uncontrolled conditions. All biological organisms are highly complex entities and their interactions with the environment and each other are unpredictable, except in the most general terms. Countless chance events impact cumulatively on the genetic composition of a descendant lineage, resulting in substantial evolutionary change over very long periods of time. Understanding how evolution works in practice is a matter for basic science, but it is attended by unique and difficult problems.

Type
Research Article
Copyright
Copyright © 1998 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelseck, C. G., and Berger, W. H. 1975. On the dissolution of planktonic foraminifera and associated microfossils during settling on the sea floor. Cushman Foundation for Foraminiferal Research, Special Publication, 13:7081.Google Scholar
Arnold, A. J. 1983. Phyletic evolution in the Globorotalia crassaformis (Galloway and Wissler) lineage: a preliminary report. Paleobiology, 9:390398.CrossRefGoogle Scholar
Arnold, A.J., Kelly, D.C., and Parker, W.J. 1995. Causality and Cope's Rule - evidence from the planktonic foraminifera. Journal of Paleontology, 69:203210.CrossRefGoogle Scholar
Banner, F. T., and Lowry, F. M. D. 1985. The stratigraphical record of the planktonic foraminifera and its evolutionary implications. Special Papers in Palaeontology, 33:117130.Google Scholar
, A. W. H. 1977. An ecological, zoogeographic and taxonomic review of recent planktonic foraminifera, p. 1100, In Ramsay, A. T. S. (ed.), Oceanic Micropaleontology, Vol. 1. Academic Press, London.Google Scholar
, A. W. H. 1980. Gametogenic calcification in a spinose planktonic foraminifer, Globigerinoides sacculifer (Brady). Marine Micropaleontology, 5:283310.CrossRefGoogle Scholar
Bemis, B.E., Spero, H.J., Bijma, J., and Lea, D.W. 1998. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceanography, 13:150160.CrossRefGoogle Scholar
Berggren, W. A., Kent, D. V., Swisher, C. C., and Aubry, M. 1995. A revised Cenozoic geochronology and chronostratigraphy, In Berggren, W. A., Kent, D. V., Aubry, M. and Hardenbol, J. (eds), Geochronology, Time Scales and Global Stratigraphic Correlation. SEPM Special Publications, 54:129212.Google Scholar
Berggren, W. A., and Norris, R. D. 1997. Biostratigraphy, phylogeny and systematics of the Paleocene trochospiral planktic foraminifera. Micropaleontology, 43, Supplement 1, 116 p.CrossRefGoogle Scholar
Bijma, J., Erez, J., and Hemleben, C. 1990. Lunar and semi-lunar reproductive-cycles in some spinose planktonic foraminifers. Journal of Foraminiferal Research, 20:117127.CrossRefGoogle Scholar
Blow, W. A. 1956. Origin and evolution of the foraminiferal genus Orbulina d'Orbigny. Micropaleontology, 2:5770.CrossRefGoogle Scholar
Blow, W. A. and Banner, F. T. 1965. The morphology, taxonomy, and biostratigraphy of Globorotalia barisanensis LeRoy, Globorotalia fohsi Cushman and Ellisor, and related taxa. Micropaleontology, 12:286302.CrossRefGoogle Scholar
Boersma, A., and Shackleton, N. J. 1976. Paleogene isotope paleoceanography. Abstract, Geological Society of America Annual Meeting (1976), Geological Society of America, Abstracts with Programs, 8:784785.Google Scholar
Boersma, A., and Shackleton., N. J., Hall, M. A., and Given, Q. 1979. Carbon and oxygen isotope records at DSDP Site 384 (North Atlantic) and some Paleocene paleotemperatures and carbon isotope variations in the Atlantic Ocean. Initial Reports of the Deep Sea Drilling Project, 43:695717.Google Scholar
Boersma, A., Premoli Silva, I., and Shackleton, N. J. 1987. Atlantic Eocene planktonic foraminiferal paleohydrographic indicators and stable isotope paleoceanography. Paleoceanography, 2:287333.CrossRefGoogle Scholar
Boersma, A., and Premoli Silva, I. 1989. Distribution of Paleogene planktonic foraminifera - analogies with the Recent? Palaeogeography, Palaeoclimatology, Palaeoecology, 83:2948.CrossRefGoogle Scholar
Bolli, H. M. 1967. The subspecies of Globorotalia fohsi Cushman and Ellisor and the zones based on them. Micropaleontology, 13:502512.CrossRefGoogle Scholar
Boltovsky, E., Boltovsky, D., Correa, N., and Brandini, F. 1996. Planktic foraminifera from the southwestern Atlantic (30°–60°S): species-specific patterns in the upper 50m. Marine Micropaleontology, 28:5372.CrossRefGoogle Scholar
Bouvier-Soumagnac, Y., and Duplessy, J-C. 1985. Carbon and oxygen sotopic composition of planktonic foraminifera from laboratory culture, plankton tows and Recent sediments: implications for the reconstruction of paleoclimatic conditions and of the global carbon cycle. Journal of Foraminiferal Research, 15:302320.CrossRefGoogle Scholar
Bralower, T. J., Zachos, J. C., Thomas, E., Parrow, M., Paull, C. K., Kelly, D. C., Premoli Silva, I., Sliter, W. V., and Lohmann, K. C. 1995. Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean: stable isotopes recorded at Ocean Drilling Program Site 865, Allison Guyot. Paleoceanography, 10:841865.CrossRefGoogle Scholar
Canudo, J.I., Keller, G., Molina, E., and Ortiz, N. 1995. Planktic foraminiferal turnover and δ13C isotopes across the Paleocene -Eocene transition at Caravaca and Zumaya, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 114:75100.CrossRefGoogle Scholar
Carstens, J., Hebbeln, D., and Wefer, G. 1997. Distribution of planktic foraminifera at the ice margin in the Arctic (Fram Strait). Marine Micropaleontology, 29:257269.CrossRefGoogle Scholar
Chaisson, W.P., and Leckie, R.M. 1993. High-resolution Neogene planktonic foraminifer biostratigraphy of Site 806, Ontong Java Plateau (western equatorial Pacific). Proceedings of the Ocean Drilling Program, Scientific Results, 130, 137178.Google Scholar
Cifelli, R. 1969. Radiation of Cenozoic planktonic foraminifera. Systematic Zoology, 18:154168.CrossRefGoogle Scholar
Cifelli, R. and Scott, G. 1986. Stratigraphic record of the Neogene globorotaliid radiation (planktonic Foraminiferida). Smithsonian Contributions to Paleobiology, 58, 101 p.Google Scholar
Corfield, R. M., and Cartlidge, J. E. 1991. Isotopic evidence for the depth stratification of fossil and recent Globigerinina: a review. Historical Biology, 5:3763.CrossRefGoogle Scholar
Corfield, R. M., and Cartlidge, J. E. 1992. Oceanographic and climatic implications of the Paleocene carbon isotope maximum. Terra Nova, 4:443455.CrossRefGoogle Scholar
Coxall, H. K., Pearson, P. N., Shackleton, N. J., and Hall, M. A. Submitted. Hantkeninid depth adaptations: an evolving life strategy in a changing ocean. Geology.Google Scholar
Darling, K. F., Wade, C. M., Kroon, D., and Leigh Brown, A. J. 1997. Planktonic foraminiferal molecular evolution and their polyphyletic origins from benthic taxa. Marine Micropaleontology, 30:251266.CrossRefGoogle Scholar
De Vargas, C., Zaninetti, I., Hilbrecht, H. and Pawloswski, J. 1997. Phylogeny and rates of molecular evolution of planktonic foraminifera SSU rDNA sequences compared to the fossil record. Journal of Molecular Evolution, 45:285294.CrossRefGoogle ScholarPubMed
De Vargas, C., Norris, R.D., Zaninetti, L., and Pawlowski, J. 1998. Cryptic diversity and speciation in the open ocean. Sociedad Mexicana de Paleontologia, Special Publication (July 5 1998):25.Google Scholar
Deuser, W. G., and Ross, E. H. 1989. Seasonally abundant planktonic foraminifera in the Sargasso Sea: succession, deep water fluxes, isotopic composition, and paleoceanographic interpretation. Journal of Foraminiferal Research, 19:268293.CrossRefGoogle Scholar
D'Hondt, S. and Zachos, J. C. 1993. On stable isotopic variation and earliest Paleocene planktonic foraminifera. Paleoceanography, 8:527547.CrossRefGoogle Scholar
D'Hondt, S. and Zachos., J. C. and Schultz, G. 1994. Stable isotopic signals and photosymbiosis in late Paleocene planktic foraminifera. Paleobiology, 20:391406.CrossRefGoogle Scholar
Douglas, R. G., and Savin, S. M. 1978. Oxygen isotopic evidence for the depth stratification of the Tertiary and Cretaceous planktic foraminifera. Marine Micropaleontology, 3:175196.CrossRefGoogle Scholar
Emiliani, C. 1954. Depth habitats of some species of pelagic foraminifers as indicated by oxygen isotopic ratios. American Journal of Science, 252:149158.CrossRefGoogle Scholar
Emiliani, C. 1955. Pleistocene temperatures. Journal of Geology, 63:538578.CrossRefGoogle Scholar
Emiliani, C. 1971. Depth habitats of growth stages of pelagic foraminifera. Science, 173:11221124.CrossRefGoogle ScholarPubMed
Erez, J., and Honjo, S. 1981. Comparison of isotopic composition of planktonic foraminifera in plankton tows, sediment traps and sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 33:193204.CrossRefGoogle Scholar
Fairbanks, R. G., Sverdlove, M., Free, R., Wiebe, P. H., and , A. W. H. 1982. Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin. Nature, 298:841844.CrossRefGoogle Scholar
Furbish, D.J., and Arnold, A.J. 1997. Hydrodynamic strategies in the morphological evolution of spinose planktonic foraminifera. Geological Society of America, Bulletin, 109:10551072.2.3.CO;2>CrossRefGoogle Scholar
Gasperi, J. T. and Kennett, J. P. 1992. Isotopic evidence for depth stratification and paleoecology of Miocene planktonic foraminifera: western equatorial Pacific DSDP Site 289, p. 117147 in Tsuchi, R. and Ingle, J.C. (eds) Pacific Neogene. University of Tokyo Press, Tokyo.Google Scholar
Grant, P. R. 1986. Ecology and evolution of Darwin's finches. Princeton University Press, Princeton N.J. Google Scholar
Grant, B.R., and Grant, P.R. 1993. Evolution of Darwin's finches caused by a rare climatic event. Proceedings of the Royal Society of London, B, 251:111117.Google Scholar
Guptha, M. V. S., Curry, W. B., Ittekkot, V., and Muralinath, A. S. 1997. Seasonal variation in the flux of planktic foraminifera: sediment trap results from the Bay of Bengal, northern Indian Ocean. Journal of Foraminiferal Research, 27:519.CrossRefGoogle Scholar
Hallock, P., Premoli Silva, I., and Boersma, A. 1991. Similarities between planktonic and larger foraminiferal evolutionary trends through Paleogene paleoceanographic changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 83:4964.CrossRefGoogle Scholar
Hanson, H.J. 1974. On feeding and supposed buoyancy mechanism in four recent globigerinid foraminifera from the Gulf of Elat, Israel. Revista Espanola de Micropaleontologia, 7:325339.Google Scholar
Hart, M. B. 1980. A water-depth model for the evolution of the planktonic Foraminiferida. Nature, 286:252254.CrossRefGoogle Scholar
Haynes, J. R. 1981. Foraminifera. Macmillan, London, 433 p.CrossRefGoogle Scholar
Hays, J.D., Imbrie, J., and Shackleton, N.J. 1976. Variations in the earth's orbit: pacemeker of the ice ages. Science, 194:11211132.CrossRefGoogle Scholar
Hemleben, C., Spindler, M., and Anderson, O. R. 1989. Modern Planktonic Foraminifera. Springer-Verlag, New York, 363 p.CrossRefGoogle Scholar
Hemleben, C., Kuhlen, D., Olsson, R. K., and Berggren, W. A. 1991. Surface texture and the first occurrence of spines in planktonic foraminifera from the early Tertiary. Geologisches Jahrbuck, 128:117146.Google Scholar
Hillbrecht, H., and Thierstein, H.R. 1996. Benthic behavior of planktic foraminifera. Geology, 24:200202.2.3.CO;2>CrossRefGoogle Scholar
Hodell, D. A., and Vayavananda, A., 1993. Early middle Miocene paleoceanography of the western equatorial Pacific (DSDP Site 289) and the evolution of Globorotalia (Fohsella) . Marine Micropaleontology, 31:279310.CrossRefGoogle Scholar
Houston, R.M., and Huber, B.T. 1998. Evidence of photosymbiosis in fossil taxa? Ontogenetic stanle isotope trends in some late Cretaceous planktonic foraminifera. Marine Micropaleontology, 34:2946.CrossRefGoogle Scholar
Johnson, M.S., Murray, J., and Clarke, B. 1993. The ecological genetics and adaptive radiation of Partula on Moorea. Oxford Surveys in Evolutionary Biology, 9:167238.Google Scholar
Huber, B.T., Bijma, J., and Darling, K. 1997. Cryptic speciation in the living planktonic foraminifer Globigerinella siphonifera (d'Orbigny). Paleobiology, 23:3362.CrossRefGoogle Scholar
Keigwin, L. D., and Corliss, B. H. 1986. Stable isotopes in late middle Eocene to Oligocene foraminifera. Geological Society of America, Bulletin, 97:335345.2.0.CO;2>CrossRefGoogle Scholar
Keller, G., Macleod, N., and Barrera, E. 1992. Eocene - Oligocene faunal turnover in planktic foraminifera, and Antarctic glaciation, p. 218244. In Prothero, D.R. and Berggren, W. A. (eds), Eocene - Oligocene climatic and biotic evolution. Princeton University Press, Princeton.CrossRefGoogle Scholar
Kellogg, D. E. 1983. Phenology of morphologic change in radiolarian lineages from deep sea cores: implications for macroevolution. Paleobiology, 9:335363.CrossRefGoogle Scholar
Kellogg, D. E. and Hays, J. D. 1975. Microevolutionary patterns in late Cenozoic radiolaria. Paleobiology, 1:150160.CrossRefGoogle Scholar
Kelly, D. C., Arnold, A. J., and Parker, W. C. 1996. Paedomorphosis and the origin of the Paleogene planktonic foraminiferal genus Morozovella . Paleobiology, 22:266281.CrossRefGoogle Scholar
Kelly, D.C., Bralower, T.J., and Zachos, J.C. 1998. Evolutionary consequences of the latest Paleocene thermal maximum for tropical planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 141:139161.CrossRefGoogle Scholar
Kennett, J. P. 1966. The Globorotalia crassaformis bioseries in north Westland and Marlborough, New Zealand. Micropaleontology, 12:235245.CrossRefGoogle Scholar
Kennett, J. P., and Vella, P. 1975. Late Cenozoic planktonic foraminifera and paleoceanography at DSDP Site 284 in the cool subtropical South Pacific. Initial Reports of the Deep Sea Drilling Project, 29:769799.Google Scholar
Kennett, J. P., and Srinivasan, M. S. 1983. Neogene Planktonic Foraminifera. Hutchinson Ross, Stroudsberg, 265 p.Google Scholar
Kitchell, J. A. 1990. The reciprocal interaction of organism and effective environment: learning more about “and”, p. 151172. In Ross, A.M. and Allmon, W.D. (eds.), Causes of evolution: a paleontological perspective. University of Chicago Press, Chicago.Google Scholar
Kroon, D., and Darling, K. 1995. Size and upwelling control of the stable isotope composition of Neogloboquadrina dutertrei (d'Orbigny), Globigerinoides ruber (d'Orbigny) and Globigerina bulloides d'Orbigny: Examples from the Panama Basin and Arabian Sea. Journal of Foraminiferal Research, 25:3952.CrossRefGoogle Scholar
Kroopnick, P. M. 1985. The distribution of 13C of CO2 in the world oceans. Deep Sea Research, 32:5784.CrossRefGoogle Scholar
Lazarus, D.B. 1983. Speciation in the pelagic protista and its study in the planktonic microfossil record: a review. Paleobiology, 9:327340.CrossRefGoogle Scholar
Lazarus, D.B. 1986. Tempo and mode of morphologic evolution near the origin of the radiolarian lineage Pterocanium prismatum . Paleobiology, 12:175189.CrossRefGoogle Scholar
Lazarus, D.B., Hilbrecht, H., Spencer-Cervato, C., and Thierstein, H. 1995. Sympatric speciation and phyletic change in Globorotalia truncatulinoides . Paleobiology, 21:975978.CrossRefGoogle Scholar
Leckie, R.M. 1989. A paleoceanographic model for the early evolutionary history of plankonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 73:107138.CrossRefGoogle Scholar
Lipps, J. H. 1979. The ecology and paleoecology of planktic foraminifera. SEPM Short Course, 6:62104.Google Scholar
Little, M. G., Schneider, R. R., Kroon, D., Price, B., Bickert, T., and Wefer, G. 1997. Rapid palaeoceanographic changes in the Benguela Upwelling System for the last 160,000 years as indicated by abundances of planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 130:135161.CrossRefGoogle Scholar
Liu, C., Olsson, R. K., and Huber, B. T. 1998. A benthic paleohabitat for Praepararotalia gen. nov. and Antarticella Loeblich and Tappan. Journal of Foraminiferal Research, 28:318.Google Scholar
Lu, G., and Keller, G. 1993. The Paleocene-Eocene transition in the Antarctic Indian Ocean: inference from planktic foraminifera. Marine Micropaleontology, 21:101142.CrossRefGoogle Scholar
Lu, G., and Keller, G. 1996. Separating ecological assemblages using stable isotope signals: late Paleocene to early Eocene planktic foraminifera, DSDP Site 577. Journal of Foraminiferal Research, 26:103112.CrossRefGoogle Scholar
Malmgren, B. A., and Kennett, J. P. 1981. Phyletic gradualism in a late Cenozoic planktonic foraminiferal lineage: DSDP 284, southwest Pacific. Paleobiology 7, 230240.CrossRefGoogle Scholar
Malmgren, B. A., and Berggren, W. A. 1987. Evolutionary changes in some late Neogene planktonic foraminifera lineages and their relationships to paleoceanographic changes. Paleoceanography, 2:445456.CrossRefGoogle Scholar
Malmgren, B. A., Kucera, M., and Ekman, G. 1996. Evolutionary changes in supplementary apertural characteristics of the Late Neogene Sphaeroidinella dehiscens lineage (planktonic foraminifera). Palaios, 11.192206.CrossRefGoogle Scholar
Martin, R.E. 1996. Biomineralization and endosymbiosis in foraminifera in response to ocean chemistry. Paleontological Journal, 30:662668.Google Scholar
Nicholson, A. J. 1960. The role of population dynamics in natural selection, p.477522. In Tax, S. (ed.), Evolution after Darwin. Chicago University Press, Chicago.Google Scholar
Norris, R. D. 1991. Parallel evolution of the keel structure of planktonic foraminifera. Journal of Foraminiferal Research, 21:319331.CrossRefGoogle Scholar
Norris, R. D. 1992. Extinction selectivity and ecology in planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 95:117.CrossRefGoogle Scholar
Norris, R. D. 1996. Symbiosis as an evolutionary innovation in the radiation of Paleocene planktic foraminifera. Paleobiology, 22:461480.CrossRefGoogle Scholar
Norris, R. D., Corfield, R. M., and Cartlidge, J. 1993. Evolution of depth ecology in the planktic foraminifera lineage Globorotalia (Fohsella) . Geology, 21:975978.2.3.CO;2>CrossRefGoogle Scholar
Norris, R. D., Corfield, R. M., and Cartlidge, J. 1994. Evolutionary ecology of Globorotalia (Globoconella) (planktic foraminifera). Marine Micropaleontology, 23:121145.CrossRefGoogle Scholar
Norris, R. D., Corfield, R. M., and Cartlidge, J. 1996. What is gradualism? Cryptic speciation in globorotaliid foraminifera. Paleobiology, 22:386405.CrossRefGoogle Scholar
Olsson, R. K., Hemleben, C., Berggren, W. A., and Liu, C. 1992. Wall texture classification of planktonic foraminifera genera in the lower Danian. Journal of Foraminiferal Research, 22:195213.CrossRefGoogle Scholar
Olsson, R. K. and Liu, C. 1993. Controversies on the placement of the Cretaceous - Paleogene boundary and the K/P mass extinction of planktonic foraminifera. Palaios, 8:127139.CrossRefGoogle Scholar
Oschlies, A., and Garcon, V. 1998. Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean. Nature, 394:266269.CrossRefGoogle Scholar
Palmer, M.R., Pearson, P.N., and Cobb, S.J. Submitted. Reconstructing past ocean pH-depth profiles.Google Scholar
Pearson, P. N. 1990. Evolution and Phylogeny of Palaeogene Planktonic Foraminifera. , University of Cambridge, 224 p.Google Scholar
Pearson, P. N. 1992. Survivorship analysis when extinction rates vary: the Paleogene planktonic foraminifera. Paleobiology, 18:115131.CrossRefGoogle Scholar
Pearson, P. N. 1993. A lineage phylogeny for the Paleogene planktonic foraminifera. Micropaleontology, 39:193232.CrossRefGoogle Scholar
Pearson, P. N. 1995. Planktonic foraminifer biostratigraphy and the development of pelagic caps on guyots in the Marshall Islands group. Proceedings of the Ocean Drilling Program, Scientific Results, 144:2159.Google Scholar
Pearson, P. N. 1996. Cladogenetic, extinction and survivorship patterns from a lineage phylogeny: the Paleogene planktonic foraminifera. Micropaleontology, 42:179188.CrossRefGoogle Scholar
Pearson, P. N. 1998. Speciation and extinction asymmetries in paleontological phylogenies: evidence for evolutionary progress? Paleobiology, 24:305335.Google Scholar
Pearson, P. N., and Shackleton, N. J. 1995. Neogene multispecies planktonic foraminifer stable isotope record, Site 871, Limalok Guyot. Proceedings of the Ocean Drilling Program, Scientific Results, 144:401410.Google Scholar
Pearson, P. N., Shackleton., N. J. and Hall, M. A. 1993. Stable isotope paleoecology of middle Eocene planktonic foraminifera and multi-species isotope stratigraphy, DSDP Site 523, South Atlantic. Journal of Foraminiferal Research, 23:123140.CrossRefGoogle Scholar
Pearson, P. N., Shackleton., N. J. and Hall, M. A. 1997a. Stable isotopic evidence for the sympatric divergence of Globigerinoides trilobus and Orbulina universa (planktonic foraminifera). Journal of the Geological Society, 154:295302.CrossRefGoogle Scholar
Pearson, P. N., Shackleton, N. J. Weedon, G.P., and Hall, M. A. 1997b. Multispecies planktonic foraminifer stable isotope stratigraphy through Oligocene/Miocene boundary climatic cycles, Site 926. Proceedings of the Ocean Drilling Program, Scientific Results, 154:441449.Google Scholar
Premoli Silva, I., and Boersma, A. 1988. Atlantic Eocene planktonic foraminiferal historical biogeography and paleohydrographic indices. Palaeogeography, Palaeoclimatology, Palaeoecology, 67:315356.CrossRefGoogle Scholar
Ravelo, A. C., and Fairbanks, R. G. 1995. Carbon isotopic fractionation in multiple species of planktonic foraminifera from core-tops in the tropical Atlantic. Journal of Foraminiferal Research, 25:5374.CrossRefGoogle Scholar
Ross, R.M., and Allmon, W.D. (eds). 1990. Causes of evolution: a paleontological perspective. University of Chicago Press, Chicago, 479 p.Google Scholar
Sanyal, A., Hemming, N.G., Broecker, W.S., Lea, D.W., Spero, H. J., and Hanson, G. N. 1996. Oceanic pH control on the boron isotopic composition of foraminifera: evidence from culture experiments. Paleoceanography, 11:513517.CrossRefGoogle Scholar
Schneider, C. E., and Kennett, J. P. 1996. Isotopic evidence for interspecies habitat differences during evolution of the Neogene planktonic foraminiferal clade Globoconella . Paleobiology, 22:282303.CrossRefGoogle Scholar
Scott, G. H. 1979. The late Miocene to early Pliocene history of the Globorotalia miozea plexus from Blind River, New Zealand. Marine Micropaleontology, 4:341361.CrossRefGoogle Scholar
Scott, G. H. 1983. Divergences and phyletic transformations in the history of the Globorotalia inflata lineage. Paleobiology, 9:422426.CrossRefGoogle Scholar
Shackleton, N. J., and Vincent, E. 1978. Oxygen and carbon isotope studies in Recent foraminifera from the southwest Indian Ocean. Marine Micropaleontology, 3:113.CrossRefGoogle Scholar
Shackleton, N. J., Corfield, R. M., and Hall, M. A. 1985. Stable isotope data and the ontogeny of Paleocene planktonic foraminifera. Journal of Foraminiferal Research, 15:321336.CrossRefGoogle Scholar
Sorhannus, U., Fenster, E. J., Burckle, L. H., and Hoffman, A. 1988. Cladogenetic and anagenetic changes in the morphology of Rhizosolenia praebergonii Mukhina. Historical Biology, 1:185205.CrossRefGoogle Scholar
Spero, H. J. 1992. Do planktic foraminifera accurately record shifts in the carbon isotopic composition of seawater CO2? Marine Micropaleontology, 19:275285.CrossRefGoogle Scholar
Spero, H. J., and Lea, D. W. 1993. Intraspecific stable isotope variability in the planktonic foraminifera Globigerinoides sacculifer. results from laboratory experiments. Marine Micropaleontology, 22:221234.CrossRefGoogle Scholar
Spero, H. J., and Lea, D. W. 1996. Experimental determination of stable isotope variability in Globigerina bulloides: implications for paleoceanographic reconstructions. Marine Micropaleontology, 28:231246.CrossRefGoogle Scholar
Spero, H. J., and Williams, D. F. 1988. Extracting environmental information from planktonic foraminifera δ13C. Nature, 335:717719.CrossRefGoogle Scholar
Spero, H. J., and Williams, D. F. 1989. Opening the carbon isotope “vital effect” black box. 1. Seasonal temperatures in the euphotic zone. Paleoceanography 4: 593601.CrossRefGoogle Scholar
Spero, H. J., Lerche, I., and Williams, D. F. 1991. Opening the carbon isotope vital effect “black box”, 2: Quantitative model for interpreting foraminiferal carbon isotope data. Paleoceanography, 6:639655.CrossRefGoogle Scholar
Spero, H. J., Bijma, J., Lea, D. W., and Bemis, B. E. 1997. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature, 390:497500.CrossRefGoogle Scholar
Stott, L. D., Kennett, J. P., Shackleton, N. J., and Corfield, R. M. 1990. The evolution of Antarctic surface waters during the Paleogene: inferences from the stable isotopic composition of planktonic foraminifers, ODP Leg 113. Proceedings of the Ocean Drilling Program, Scientific Results, 113:849863.Google Scholar
Ufkes, E., Jansen, J. H. F., and Brummer, G. A. 1998. Living planktonic foraminifera in the eastern South Atlantic during spring: indicators of water masses, upwelling and the Congo (Zaire) River plume. Marine Micropaleontology, 33:2753.CrossRefGoogle Scholar
Urey, H. C. 1947. The thermodynamic properties of isotopic substances. Journal of the Chemical Society, 1947:562581.CrossRefGoogle Scholar
Van Eijden, A. J. M. 1995. Morphology and relative frequency of planktic foraminiferal species in relation to oxygen isotopically inferred depth habitats. Palaeogeography, Palaeoclimatology, Palaeoecology, 113:267301.CrossRefGoogle Scholar
Wei, K-Y. 1994a. Stratophenetic tracing of phylogeny using SIMCA pattern-recognition technique - a case study of the late Neogene planktic foraminifera Globoconella clade. Paleobiology, 20:5265.CrossRefGoogle Scholar
Wei, K-Y. 1994b. Allometric heterochrony in the Pliocene-Pleistocene planktic foraminiferal clade Globoconella . Paleobiology, 20:6684.CrossRefGoogle Scholar
Wei, K-Y. and Kennett, J. P. 1988. Phyletic gradualism and punctuated equilibrium in the late Neogene planktonic foraminiferal clade Globoconella . Paleobiology, 14:345363.CrossRefGoogle Scholar
Williams, D. F., , A. W. H., and Fairbanks, R. G. 1981. Seasonal stable isotopic variations in living planktonic foraminifera from Bermuda plankton tows. Palaeogeography, Palaeoclimatology, Palaeoecology, 33:71102.CrossRefGoogle Scholar
Zachos, J. C., Lohmann, K. C., Walker, J. C. G., and Wise, S. W. 1993. Abrupt climate change and transient climates during the Paleogene: a marine perspective. Journal of Geology, 101:191213.CrossRefGoogle ScholarPubMed
Zachos, J. C., Stott, L. D., and Lohmann, K. C. 1994. Evolution of early Cenozoic marine temperatures. Paleoceanography, 9:353387.CrossRefGoogle Scholar