Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T13:05:17.692Z Has data issue: false hasContentIssue false

The Paleobiology of Pollination and its Precursors

Published online by Cambridge University Press:  21 July 2017

Conrad C. Labandeira*
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 USA and University of Maryland, Department of Entomology, College Park, MD 20742-4454 USA
Get access

Extract

Perhaps the most conspicuous of associations between insects and plants is pollination. Pollinating insects are typically the first and most obvious of interactions between insects and plants when one encounters a montane meadow or a tropical woodland. The complex ecological structure of insect pollinators and their host plants is a central focus within the ever-expanding discipline of plant-insect interactions. The relationships between plants and insects have provided the empirical documentation of many case-studies that have resulted in the formulation of biological principles and construction of theoretical models, such as the role of foraging strategy on optimal plant-resource use, the advantages of specialized versus generalized host preferences as viable feeding strategies, and whether “pollination syndromes” are meaningful descriptions that relate flower type to insect mouthpart structure and behavior (Roubik, 1989; Ollerton, 1996; Waser et al., 1996; Johnson and Steiner, 2000). Much of the recent extensive discussion of plant-insect associations has centered on understanding the origin, maintenance, and evolutionary change in plant/pollinator associations at ecological time scales and increasingly at longer-term macroevolutionary time intervals (Armbruster, 1992; Pellmyr and Leebens-Mack, 1999). Such classical plant-insect association studies—cycads and cycad weevils, figs and fig wasps, and yuccas and yucca moths—were explored at modern time scales and currently are being examined through a long-term geologic component that involves colonization models based on cladogenetic events of plant and insect associates, buttressed by the fossil record (Farrell, 1998; Pellmyr and Leebens-Mack, 1999; A. Herre, pers. comm.). In addition to tracing modern pollination to the earlier Cenozoic and later Mesozoic, there is a resurgence in understanding the evolutionary history of earlier palynivore taxa (spore, prepollen and pollen consumers), which led toward pollination as a mutualism (Scott et al., 1992).

Type
Research Article
Copyright
Copyright © 2000 by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves-Dos-Santos, I., and Wittmann, D. 1999. The proboscis of the long-tongued Ancyloscelis bees (Anthophoridae: Apoidea), with remarks on flower visits and pollen collecting with the mouthparts. Journal of the Kansas Entomological Society, 72: 277288.Google Scholar
Ananthakrishnan, T.N. 1993. The role of thrips in pollination. Current Science, 65: 262264.Google Scholar
Ananthakrishnan, T.N., and James, P.W. 1983. Feeding preferences in some sporophagous Idolothripinae (Tubulifera: Thysanoptera). Proceedings of the Indian National Science Academy, B 49: 8692.Google Scholar
Appanah, S., and Chan, H.T. 1981. Thrips: the pollinators of some dipterocarps. Malaysian Forester, 44:234252.Google Scholar
Archangelsky, S., and Cuneo, R. 1987. Fergliocladaceae, a new conifer family from the Permian of Gondwana. Review of Paleobotany and Palynology, 51: 330.CrossRefGoogle Scholar
Armbruster, W.S. 1992. Phylogeny and the evolution of plant-animal interactions. Bioscience, 42: 1220.CrossRefGoogle Scholar
Armstrong, J.A. 1979. Biotic pollination mechanisms in the Australian flora—a review. New Zealand Journal of Botany, 17:467508.CrossRefGoogle Scholar
Armstrong, J.E., and Irvine, A.K. 1989. Floral biology of Myristica insipida (Myristicaceae), a distinctive beetle pollination syndrome. American Journal of Botany, 76: 8694.CrossRefGoogle Scholar
Baird, A.M. 1938. A contribution to the life history of Macrozamia reidlei . Journal of the Royal Society of Western Australia, 25: 153175.Google Scholar
Baker, H., and Hurd, P.D. Jr. 1968. Intrafloral ecology. Annual Review of Entomology, 13: 385414.CrossRefGoogle Scholar
Barker, R.J., and Lehner, Y. 1972. The resistance of pollen grains and their degradation by bees. Bee World, 53: 173177.CrossRefGoogle Scholar
Basinger, J.F., and Dilcher, D.L. 1984. Ancient bisexual flowers. Science, 224: 511513.CrossRefGoogle ScholarPubMed
Bateman, R.M., Crane, P.R., DiMichele, W.A., Kenrick, P.R., Rowe, N.P., Speck, T. and Stein, W.E. 1998. Early evolution of land plants: phylogeny, physiology and ecology of the primary terrestrial radiation. Annual Review of Ecology and Systematics, 29: 263292.CrossRefGoogle Scholar
Bateman, R.M., and DiMichele, W.A. 1994. Heterospory: the most iterative key innovation in the evolutionary history of the plant kingdom. Biological Reviews, 69: 345417.CrossRefGoogle Scholar
Beattie, A.J. 1985. The Evolutionary Ecology of Ant-Plant Mutualisms. Cambridge University Press, Cambridge, U.K. CrossRefGoogle Scholar
Bateman, R.M., Turnbull, C., Knox, R.B., and Williams, E.G. 1984. Ant inhibition of pollen function: a possible reason why ant pollination is rare. American Journal of Botany, 71: 421426.Google Scholar
Belokobylskij, S.A., and Jervis, M.A. 1998. Descriptions of two new species of the genus Agathis Latreille (Hymenoptera, Braconidae, Agathinae) from Spain, with a record of mating by one species on flowers. Journal of Natural History, 32: 12171225.CrossRefGoogle Scholar
Bentley, B.L. 1977. Extrafloral nectaries and protection by pugnacious bodyguards. Annual Review of Ecology and Systematics, 8: 407427.CrossRefGoogle Scholar
Berg, C.C., and Wiebes, J.T. 1992. African Fig Trees and Fig Wasps. North-Holland, Amsterdam.Google Scholar
Bernardi, N. 1973. The genera of the family Nemestrinidae (Diptera: Brachycera). Arquivos de Zoologica, 24:211318.CrossRefGoogle Scholar
Billes, D.J. 1941. Pollination of Theobroma cacao L. in Trinidad, B.W.I. Tropical Agriculture, 18: 151156.Google Scholar
Bino, R.J., Devente, N., and Meeuse, A.D.J. 1984. Entomophily in the dioecious gymnosperm Ephedra aphylla Forsk. (=E. alte C.A. Mey.), with some notes on E. campylopoda C.A. Mey. II. Pollination droplets, nectaries, and nectarial secretion in Ephedra . Proceedings of the Royal Netherlands Academy of Science, Amsterdam, 87C: 1524.Google Scholar
Board, V.V., and Burke, H.R. 1971. Observations on the life history and habits of Endalus celatus Burke (Coleoptera: Curculionidae). Coleopterists Bulletin, 25: 6365.Google Scholar
Bonnier, G. 1879. Les Nectaires: Étude Critique, Anatomique et Physiologique. G. Masson, Paris.Google Scholar
Bose, M.N. 1968. Anew species of Williamsonia from the Rajmahal Hills, India. Journal of the Linnean Society (Botany), 61: 121127.CrossRefGoogle Scholar
Breckon, G., and Ortiz, V.N. 1983. Pollination of Zamia pumila by fungus-gnats. American Journal of Botany, 70: 106107 [abstract].Google Scholar
Burdick, D.J. 1961. A taxonomic and biological study of the genus Xyela Dalman in North America. University of California Publications in Entomology, 17: 285356.Google Scholar
Bürgis, H. 1981. Beitrag zur Morphologie des Kopfes der Imago von Cetonia aurata L. (Coleoptera, Insecta). Zoologische Jahrbuch (Anatomie), 106: 186220.Google Scholar
Carpenter, F.M. 1997. Insecta, p.184193. In Shabica, C.W. and Hay, A.A. (eds.), Richardson's Guide to the Fossil Fauna of Mazon Creek. Northern Illinois University Press, Chicago.Google Scholar
Carpenter, J.M., and Rasnitsyn, A.P. 1990. Mesozoic Vespidae. Psyche, 97: 120.CrossRefGoogle Scholar
Chaloner, W.G. 1970. The evolution of miospore polarity. Geoscience and Man, 1: 4756.CrossRefGoogle Scholar
Church, A.H. 1914. On the floral mechanism of Welwitschia mirabilis (Hooker). Philosophical Transactions of the Royal Society of London B, 205: 115151.Google Scholar
Cornet, B. 1989. The reproductive morphology and biology of Sanmiguelia lewisii, and its bearing on angiosperm evolution in the Late Triassic. Evolutionary Trends in Plants, 3: 2551.Google Scholar
Cornet, B. 1996. A new gnetophyte from the Late Carnian (Late Triassic) of Texas and its bearing on the origin of the angiosperm carpel and stamen, p. 3267. In Taylor, D.W. and Hickey, L.J. (eds.), Flowering Plant Origin, Evolution & Phylogeny. Chapman and Hall, New York.CrossRefGoogle Scholar
Crailsheim, K. 1988. Regulation of food passage in the intestine of the honeybee (Apis mellifera L.). Journal of Insect Physiology, 34: 8590.CrossRefGoogle Scholar
Crane, P.R., Friis, E.M., and Pedersen, K.R. 1995. The origin and early diversification of angiosperms. Nature, 374: 2733.CrossRefGoogle Scholar
Crane, P.R., and Hult, C.D. 1988. Welwitschia the wonderful: life as a survivor in the desert of southwestern Africa. Field Museum of Natural History Bulletin, 59: 2229.Google Scholar
Crepet, W.L. 1974. Investigations of North American cycadeoids: the reproductive biology of Cycadeoidea . Palaeontographica B, 148: 144169.Google Scholar
Crane, P.R. 1979. Insect pollination: a paleontological perspective. Bioscience, 29: 102108.Google Scholar
Crane, P.R. 1996. Timing in the evolution of derived floral characters—Upper Cretaceous (Turonian) taxa with tricolpate and tricolpate–derived pollen. Review of Palaeobotany and Palynology, 90: 339359.Google Scholar
Crane, P.R., and Friis, E.M. 1987. The evolution of insect pollination in angiosperms, p.181201. In Friis, E.M., Chaloner, W.G. and Crane, P.R. (eds.), The Origins of Angiosperms and their Biological Consequences. Cambridge University Press, Cambridge, U.K. Google Scholar
Chaloner, W.G., and Nixon, K.C. 1994. Rowers of Turonian Magnoliidae and their implications. Plant Systematics and Evolution, Supplement, 8: 7391.Google Scholar
Chaloner, W.G., and Nixon, K.C. 1996. The fossil history of stamens, p. 2557. In D'Arcy, W.G. and Keating, R.C. (eds.), The Anther: Form, Function and Phylogeny. Cambridge University Press, Cambridge, U.K. Google Scholar
Chaloner, W.G., and Nixon, K.C. 1998. Fossil Clusiaceae from the Late Cretaceous (Turonian) of New Jersey and implications regarding of bee pollination. American Journal of Botany, 85: 11221133.Google Scholar
Chaloner, W.G., and Nixon, K.C. 1985. The diversification of the Leguminosae: first fossil evidence of the Mimosoideae and Papilionoideae. Science, 228: 10871089.Google Scholar
Crowson, R.W. 1981. The Biology of the Coleoptera. Academic Press, New York.Google Scholar
Crowson, R.W. 1990. A new genus of Boganiidae (Coleopteran) from Australia, with observations on glandular openings, cycad associations, and geographical distribution in the family. Journal of the Australian Entomological Society, 29: 9199.CrossRefGoogle Scholar
Crowson, R.W. 1991. The relations of Coleoptera to Cycadales, p. 1329. In Zunino, M., Bellés, X. and Blas, M. (eds.), Advances in Coleopterology. European Association of Coleopterology, Barcelona.Google Scholar
Darwin, C. 1877. The Various Contrivances by which Orchids are Fertilised by Insects. Second edition. Murray, London.Google Scholar
De Buck, N. 1990. Bioembezoek en Bestuivingsecologie van Zweefvliegen (Diptera, Syrphidae) in het Bijzonder voor Beluga. Koninklijk Belgisch Instituut voor Natuurwetenschappen, Brussels.Google Scholar
Delevoryas, T. 1968. Investigations of North American cycadeoids: structure, ontogeny and phylogenetic considerations of cones of Cycadeoidea . Palaeontographica B, 121: 122133.Google Scholar
Devries, P.J. 1979. Pollen-feeding rainforest Parides and Battus butterflies in Costa Rica. Biotropica, 11: 237238.CrossRefGoogle Scholar
Deyrup, M.A. 1988. Pollen-feeding in Poecilognathus punctipennis (Diptera: Bombyliidae). Florida Entomologist, 71: 597605.CrossRefGoogle Scholar
Diels, L. 1916. Käferblumen bei den Ranales und ihre Bedeutung für die Phylogenie der Angiospermen. Berichte Deutsche Botanische Gesellschaft, 34: 758774.Google Scholar
Dilcher, D.L. 1995. Plant reproductive strategies: using the fossil record to unravel current issues in plant reproduction, p. 187198. In Hoch, P.C. and Stephenson, A.G. (eds.), Experimental and Molecular Approaches to Plant Biosystematics. Monographs in Systematic Botany from the Missouri Botanical Garden, 53: 187–198.Google Scholar
DiMichele, W.A., Davis, J.I., and Olmstead, R.G. 1989. Origins of heterospory and the seed habit: the role of heterochrony. Taxon, 38: 111.CrossRefGoogle Scholar
Dlussky, G.M. 1975. Formicoidea, Formicidae, Sphecomyrminae. Transactions of the Paleontological Institute, 147: 114122.Google Scholar
Dogra, P.D. 1964. Pollination mechanisms in gymnosperms, p. 142175. In Nair, P.K.K. (ed.), Advances in Palynology. National Botanic Gardens, Lucknow.Google Scholar
Donaldson, J.S. 1992. Adaptation for oviposition into concealed cycad ovules in the cycad weevils Antliarhinus zamiae and A. signatus (Coleoptera: Curculionoidea). Biological Journal of the Linnean Society, 47: 2335.CrossRefGoogle Scholar
Donaldson, J.S., Nänni, I., and De Wet Bösenberg, J. 1995. The role of insects in the pollination of Encephalartos cycadifolius , p. 423434. In Vorster, P. (ed.), Proceedings of the Third International Conference on Cycad Biology. Cycad Society of South Africa, Stellenbosch.Google Scholar
Downes, J.A. 1955. The food habits and description of Atrichopogon pollinivorous sp. n. (Diptera: Ceratopogonidae). Transactions of the Royal Entomological Society of London, 106: 439453.Google Scholar
Downes, J.A. 1968. A nepticulid moth feeding at the leaf-nectaries of poplar. Canadian Entomologist, 100: 10781079.CrossRefGoogle Scholar
Durden, C.J., and Rose, H. 1978. Butterflies from the middle Eocene: the earliest occurrence of fossil Papilionoidea (Lepidoptera). Pierce-Sellards Series, Texas Memorial Museum, 29: 125.Google Scholar
Eastham, L.E.S., and Eassa, Y.E.E. 1955. The feeding mechanism of the butterfly Pieris brassicae L. Philosophical Transactions of the Royal Society of London, 239B: 143.Google Scholar
Edwards, D. 1996. New insights into early land ecosystems: a glimpse of a Lilliputian world. Review of Paleobotany and Palynology, 90: 159174.CrossRefGoogle Scholar
Edwards, D., Selden, P.A., Richardson, J.B., and Axe, L. 1995. Coprolites as evidence for plant-animal interaction in Siluro-Devonian terrestrial ecosystems. Nature, 377: 329331.CrossRefGoogle Scholar
Eisikowitch, D. 1988. Flower/insect interrelations—a case of unusual predation. Evolutionary Theory, 8: 151154.Google Scholar
Elliott, D.K., and Nations, J.D. 1998. Bee burrows in the Late Cretaceous (Late Cenomanian) Dakota Formation, northeastern Arizona. Ichnos, 5: 243253.Google Scholar
Endress, P.K. 1994. Diversity and Evolutionary Biology of Tropical Rowers. Cambridge University Press Cambridge, U.K. Google Scholar
Engel, M.S. 2000. A new interpretation of the oldest fossil bee (Hymenoptera: Apidae). American Museum Novitates, 3296: 111.2.0.CO;2>CrossRefGoogle Scholar
Enrödy-Younga, S., and Crowson, R.A. 1986. Boganiidae, a new beetle family for the African fauna (Coleoptera: Cucujoidea). Annals of the Transvaal Museum, 34: 253273.Google Scholar
Faegri, K., and Van Der Pijl, L. 1980. The Principles of Pollination Ecology. Third edition. Pergamon, Oxford, U.K. Google Scholar
Fahn, A. 1979. Sectetory Tissues in Plants. Academic Press, London.Google Scholar
Falder, A.B., Rothwell, G.W., Mapes, G., Mapes, R.H., and Doguzhaeva, L.R. 1999. Pityostrobus milleri sp. nov., a pinaceous cone from the Lower Cretaceous (Aptian) of southwestern Russia. Review of Paleobotany and Palynology, 103: 253261.CrossRefGoogle Scholar
Farrell, B.D. 1998. “Inordinate fondness” explained: why are there so many beetles? Science, 281: 555559.CrossRefGoogle ScholarPubMed
Fawcett, P.K.S., and Norstog, K.J. 1993. Zamia pumila in south Florida: a preliminary report on its pollinators R. slossoni, a snout weevil and P. zamiae, a clavicorn beetle, p. 109120. In Stevenson, D.W. and Norstog, K.J. (eds.), Proceedings of CYCAD 90, the Second International Conference on Cycad Biology. Palm and Cycad Societies of Australia, Milton, Australia.Google Scholar
Forster, P.I., Machin, P.J., Mound, L., and Wilson, G.W. 1994. Insects associated with reproductive structures of cycads in Queensland and northeast New South Wales, Australia. Biotropica, 26: 217222.CrossRefGoogle Scholar
Friis, E.M. 1985. Structure and function in Late Cretaceous angiosperm flowers. Biologiske Skrifter, 25: 137.Google Scholar
Gess, S.K. 1996. The Pollen Wasps: Ecology and Natural History of the Masarinae. Harvard University Press, Cambridge, MA.CrossRefGoogle Scholar
Gibbs, G.W. 1979. Some notes on the biology and status of the Mnesarchaeidae (Lepidoptera). New Zealand Entomologist, 7: 29.CrossRefGoogle Scholar
Gilbert, F.S. 1981. Foraging ecology of hoverflies: morphology of the mouthparts in relation to feeding on nectar and pollen in some common urban species. Ecological Entomology, 6: 245262.CrossRefGoogle Scholar
Gilbert, F.S., and Jervis, M. 1998. Functional, evolutionary and ecological aspects of feeding-related mouthpart specializations in parasitoid flies. Biological Journal of the Linnean Society, 63: 495535.CrossRefGoogle Scholar
Gilbert, L.E. 1972. Pollen feeding and reproductive biology of Heliconius butterflies. Proceedings of the National Academy of Sciences USA, 69: 14031407.CrossRefGoogle ScholarPubMed
Van Der Goot, V.S., and Grabandt, R.A.J., 1970. Some species of the genera Melanostoma, Platycheirus and Pyrophaena (Diptera, Syrphidae) and their relation to flowers. Entomologische Berichten, 30: 135143.Google Scholar
Gottsberger, G. 1988. The reproductive biology of primitive angiosperms. Taxon, 37: 630643.CrossRefGoogle Scholar
Gottsberger, G., Silbauer-Gottsberger, I., and Ehrendorfer, F. 1980. Reproductive biology in the primitive relic angiosperm Drimys brasiliensis (Winteraceae). Plant Systematics and Evolution, 135: 1139.CrossRefGoogle Scholar
Grant, V. 1950. The pollination of Calycanthus occidentalis . American Journal of Botany, 37: 294297.CrossRefGoogle Scholar
Grant, V., and Grant, K.A. 1965. Flower Pollination in the Phlox Family. Columbia University Press, New York.Google Scholar
Grimaldi, D., Bonwich, E., Delannoy, M., and Doberstein, S. 1994. Electron microscopic studies of mummified tissues in amber fossils. American Museum Novitates, 3097: 131.Google Scholar
Grinfel'D, E.K. 1955. Diptera feeding on nectar and pollen and their role in the pollination of plants. Vestnik Leningradskogo Universiteta, 10: 1525 [in Russian].Google Scholar
Grinfel'D, E.K. 1957. The feeding of the grasshoppers (Orthoptera, Tettigonoidea) on pollen of flowers and their possible significance in the origin of entomophily in plants. Entomologicheskoe Obozrenie 36: 619624 [in Russian].Google Scholar
Grinfel'D, E.K. 1959. Feeding of thrips on the pollen of flowers and the origin of asymmetry in their mouthparts. Entomological Review, 38: 715720.Google Scholar
Grinfel'D, E.K. 1962. The Origin of Anthophily in Insects. Leningrad University, Leningrad [in Russian].Google Scholar
Grinfel'D, E.K. 1975. Anthophily in beetles (Coleoptera) and a critical evaluation of the cantharophilous hypothesis. Entomological Review, 54(3):1822.Google Scholar
Grogan, D.E., and Hunt, J.H. 1977. Digestive proteases of two species of wasps of the genus Vespula . Insect Biochemistry, 7: 191196.CrossRefGoogle Scholar
Grogan, D.E., and Hunt, J.H. 1979. Pollen proteases: their potential role in insect digestion. Insect Biochemistry, 9: 309313.CrossRefGoogle Scholar
Hagerup, O. 1950. Thrips pollination in Calluna . Biologiske Meddelelser, 18: 116.Google Scholar
Haines, R.J., Prakash, N., and Nikles, D.G. 1984. Pollination in Araucaria Juss. Australian Journal of Botany, 32: 583594.CrossRefGoogle Scholar
Halle, T.G. 1929. Some seed-bearing pteridosperms from the Permian of China. Kungl. Svenska Vetenskapakademiens Handlingar, (3) 6: 324.Google Scholar
Handlirsch, A. 1906–1908. Die Fossilen Insekten und die Phylogenie der Rezenten Formen. Two volumes. Wilhelm Engelmann, Leipzig.Google Scholar
Harris, T.M. 1973. The strange Bennettitales. Nineteenth Sir Albert Charles Seward Memorial Lecture, Birbal Sahni Institute, 1970, 11 pp.Google Scholar
Haslett, J.R. 1983. A photographic account of pollen digestion by adult hoverflies. Physiological Entomology, 8: 167171.CrossRefGoogle Scholar
Haslett, J.R. 1989. Interpreting patterns of resource utilization: randomness and selectivity in pollen feeding by adult hoverflies. Oecologia, 78: 433442.CrossRefGoogle ScholarPubMed
Heiser, C.B. 1962. Some observations on pollination and compatibility in Magnolia . Proceedings of the Indiana Academy of Sciences, 72: 259266.Google Scholar
Hesse, M. 1978. Entwicklungsgeschichte und Ultrastruktur von Pollenkitt und Exine bei nahe vewandten entomophilen und anemophilen Angiospermensippen: Ranunculaceae Hamamelidaceae, Platanaceae. Plant Systematics and Evolution, 130: 1342.CrossRefGoogle Scholar
Hirst, S., and Maulik, S. 1926. On some arthropod remains from the Rhynie Chert (Old Red Sandstone). Geological Magazine, 63: 69071.CrossRefGoogle Scholar
Holloway, B.A. 1976. Pollen-feeding in hover-flies (Diptera: Syrphidae). New Zealand Journal of Zoology, 3: 339350.CrossRefGoogle Scholar
Hotton, C.L., Hueber, F.M., and Labandeira, C.C. 1996. Plant-arthropod interactions from early terrestrial ecosystems: two Devonian examples. Paleontological Society Special Publication, 8: 181 [abstract].CrossRefGoogle Scholar
Hult, C.D., and Crane, P.R. 1988. The Gnetales: botanical remnants from the Age of Dinosaurs. Field Museum of Natural History Bulletin, 59: 2129.Google Scholar
Hunt, J.H., Brown, P.A., Sago, K.M., and Kerker, J.A. 1991. Vespid wasps eat pollen (Hymenoptera: Vespidae). Journal of the Kansas Entomological Society, 64: 127130.Google Scholar
Jermy, T. 1999. Deep flowers for long tongues: a final word. Trends in Ecology and Evolution 14: 34.CrossRefGoogle ScholarPubMed
Jervis, M.A. 1998. Functional and evolutionary aspects of mouthpart structure in parasitoid wasps. Biological Journal of the Linnean Society, 63: 461493.CrossRefGoogle Scholar
Jervis, M.A., Kidd, N.A.C., Fitton, M.G., Huddleston, T., and Dawah, H.A. 1993. Flower-visiting by hymenopteran parasitoids. Journal of Natural History, 27: 67105.CrossRefGoogle Scholar
Jervis, M.A., and Vilhelmsen, L. 2000. Mouthpart evolution in adults of the basal, “symphytan” hymenopteran lineages. Biological Journal of the Linnean Society, 70: 121146.Google Scholar
Johnson, K.R., Nichols, D.J., Attrep, M. Jr., and Orth, C.J. 1989. High-resolution leaf-fossil record spanning the Cretaceous/Tertiary boundary. Nature, 340: 708711.CrossRefGoogle Scholar
Johnson, S.D., and Steiner, K.E. 2000. Generalization versus specialization in plant pollination systems. Trends in Ecology and Evolution, 15: 140143.CrossRefGoogle ScholarPubMed
Jones, G.D., and Bryant, V.M. Jr. 1996. Melissopalynology, p.933938. In Jansonius, J. and McGregor, D.C. (eds.), Palynology: Principles and Applications, Volume 3. American Association of Stratigraphic Palynologists, College Station, TX.Google Scholar
Kato, M., and Inoue, T. 1994. Origin of insect pollination. Nature, 368: 195.CrossRefGoogle Scholar
Kevan, P.G., and Kevan, D.K.M. 1970. Collembola as pollen feeders and flower visitors with observations from the High Arctic. Quaestiones Entomologicae, 6: 311326.Google Scholar
Kirk, W.D.J. 1984. Pollen-feeding in thrips (Insecta: Thysanoptera). Journal of Zoology, 204: 107117.CrossRefGoogle Scholar
Kirk, W.D.J. 1996. Thrips. Richmond Publishing Co, Slough, U.K. Google Scholar
Klungness, L.M., and Peng, Y.-S. 1983. A scanning electron microscopic study of pollen loads collected and stored by honeybees. Journal of Apicultural Research, 22: 264271.CrossRefGoogle Scholar
Klungness, L.M., and Peng, Y.-S. 1984. Scanning electron microscope observations of pollen food bolus in the alimentary canal of honeybees (Apis mellifera L.) Canadian Journal of Zoology 62: 13161319.CrossRefGoogle Scholar
Koptur, S., Smith, A.R., and Baker, I. 1982. Nectaries in some Neotropical species of Polypodium (Polypodiaceae): preliminary observations and analyses. Biotropica, 14: 108113.CrossRefGoogle Scholar
Krassilov, V.A., and Rasnitsyn, A.P. 1983. A unique find: pollen in the intestine of Early Cretaceous sawflies. Paleontological Journal, 1982(4): 8095.Google Scholar
Krassilov, V.A., and Rasnitsyn, A.P. 1997. Pollen in the guts of Permian insects: first evidence of pollinivory and its evolutionary significance. Lethaia, 29: 369372.CrossRefGoogle Scholar
Krassilov, V.A., and Rasnitsyn, A.P. 1999. Plant remains from the guts of fossil insects: evolutionary and paleoecological inferences, p. 6572. In Zherikhin, V.V., (ed.), Proceedings of the First Palaeoentomological Conference. AMBA Projects International, Bratislava, and the Paleontological Institute, Moscow.Google Scholar
Krassilov, V.A., Rasnitsyn., A.P. and Alfonin, S.A. 1999. Pollen morphotypes from the intestine of a Permian booklouse. Review of Paleobotany and Palynology, 106: 8996.CrossRefGoogle Scholar
Krassilov, V.A., Zherikhin, V.V., and Rasnitsyn, A.P. 1997a. Classopollis in the guts of Jurassic insects. Palaeontology, 40: 10951101.Google Scholar
Krassilov, V.A., Zherikhin, V.V., and Rasnitsyn, A.P. 1997b. Pollen in guts of fossil insects as evidence for coevolution. Doklady Biological Sciences, 354:239241.Google Scholar
Kraus, O, and Kraus, M. 1994. Phylogenetic system of the Tracheata (Mandibulata): on “Myriapoda”- Insecta interrelationships, phylogenetic age and primary ecological niches. Verhandlungen der Naturwiss. Vereins im Hamburg, N.S. 34: 531.Google Scholar
Kristensen, N.P. 1984. Studies on the morphology and systematics of primitive Lepidoptera (Insecta). Steenstrupia, 10: 141191.Google Scholar
Kristensen, N.P. 1995. Forty years' insect phylogenetic systematics: Hennig's “Kritische Bemerkungen…” and subsequent developments. Zoologische Beiträge (N.F.) 36: 83124.Google Scholar
Krombein, K.V., Norden, B.B., Rickson, M.M., and Rickson, F.R. 1999. Biodiversity of domatia occupants (ants, wasps, bees, and others) of the Sri Lankan myrmecophyte Humboldtia laurifolia Vahl (Fabaceae). Smithsonian Contributions to Zoology, 603: 134.CrossRefGoogle Scholar
Kroon, G.H., Van Praagh, J.P., and Velthuis, H.H.W. 1974. Osmotic shock as a prerequisite to pollen digestion in the alimentary tract of the worker honeybee. Journal of Apicultural Research, 13: 177181.CrossRefGoogle Scholar
Kugler, H. 1950. Der Blütenbesuch der Schlammfliege (Eristalomyia tenax). Zeitschrift für Vergleichende Physiologic, 32: 328347.CrossRefGoogle Scholar
Kukalová-Peck, J. 1987. New Carboniferous Diplura, Monura, Thysanura, the hexapod ground plan, and the role of thoracic side lobes in the origin of wings (Insecta). Canadian Journal of Zoology, 65: 23272345.CrossRefGoogle Scholar
Kukalová-Peck, J., and Brauckmann, C. 1992. Most Paleozoic Protorthoptera are ancestral hemipteroids: major wing braces as clues to a new phylogeny of Neoptera (Insecta). Canadian Journal of Zoology, 70: 24522473.CrossRefGoogle Scholar
Kuschel, G. 1983. Past and present of the relict family Nemonychidae (Coleoptera, Curculionoidea). Geojournal, 7: 499504.Google Scholar
Kuschel, G. 1990. Some weevils from Winteraceae and other hosts from New Caledonia. Tulane Studies in Zoology and Botany, 27: 2947.Google Scholar
Kuschel, G., and May, B.M. 1990. Palophaginae, a new subfamily for leaf-beetles, feeding as adult and larva on araucarian pollen in Australia (Coleoptera: Megalopodidae). Invertebrate Taxonomy, 3: 697719.CrossRefGoogle Scholar
Kuschel, G., and May, B.M. 1996. Discovery of Palophaginae (Coleoptera: Megalopodidae) on Araucaria araucana. in Chile and Argentina. New Zealand Entomologist, 19: 113.CrossRefGoogle Scholar
Labandeira, C.C. 1997a. Insect mouthparts: ascertaining the paleobiology of insect feeding strategies. Annual Review of Earth and Planetary Sciences, 26: 329377.CrossRefGoogle Scholar
Labandeira, C.C. 1997b. Permian pollen eating. Science, 277: 14221423.CrossRefGoogle Scholar
Labandeira, C.C. 1998a. The fossil history of spore and pollen consumption by insects: implications for the origin of pollination. Abstracts of the First Paleoentomological Conference, p. 20. Paleontological Institute of the Russian Academy of Sciences, Moscow.Google Scholar
Labandeira, C.C. 1998b. Early history of arthropod and vascular plant associations. Annual Review of Earth and Planetary Sciences, 26: 329377.CrossRefGoogle Scholar
Labandeira, C.C. 1998c. How old is the flower and the fly? Science, 280: 5759.CrossRefGoogle Scholar
Labandeira, C.C. 2001. The history of associations between plants and animals. In Herrera, C. and Pellmyr, O., (eds.), Plant-Animal Interactions. Blackwell Science, Oxford. In press .Google Scholar
Labandeira, C.C. Johnson, K.R., and Lang, P.J. 1999. Insect extinction at the Cretaceous/ Tertiary boundary. Geological Society of America, Abstracts with Programs, 31: A72 [abstract].Google Scholar
Labandeira, C.C., Beall, B.S., and Hueber, F.M. 1988. Early insect diversification: evidence from a Lower Devonian bristletail from Québec. Science, 242: 913916.CrossRefGoogle Scholar
Labandeira, C.C., Dilcher, D.L., Davis, D.R., and Wagner, D.L. 1994. Ninety-seven million years of angiosperm-insect association: Paleobiological insights into the meaning of coevolution. Proceedings of the National Academy of Sciences USA, 91: 1227812282.CrossRefGoogle ScholarPubMed
Labandeira, C.C., and Sepkoski, J.J. Jr. 1993. Insect diversity in the fossil record. Science, 261: 310315.CrossRefGoogle ScholarPubMed
Larsson, S.G. 1978. Baltic amber: a palaeobiological study. Entomonograph, 1: 1192.Google Scholar
Lawrence, J.F. 1999. The Australian Ommatidae (Coleoptera: Archostemata): new species, larva and discussion of relationships. Invertebrate Taxonomy, 13: 369390.CrossRefGoogle Scholar
Lawton, J.H. 1984. Non-competitive populations, non-convergent communities, and vacant niches: the herbivores of bracken, p. 67100. In Strong, D.R., Simberloff, D., Abele, L.G. and thistle, A.B. (eds.), Ecological Communities: Conceptual Issues and the Evidence. Princeton University Press, Princeton, N.J. CrossRefGoogle Scholar
Leereveld, H. 1982. Anthecological relations between reputedly anemophilous flowers and syrphid flies. III. World-wide survey of crop and intestine content of certain anthophilous syrphid flies. Tijdschrift voor Entomologie, 125: 2535.Google Scholar
Leius, K. 1960. Attractiveness of different foods and flowers to the adults of some hymenopterous parasites. Canadian Entomologist, 92: 369376.CrossRefGoogle Scholar
Leppik, E.E. 1963. Fossil evidence of floral evolution. Lloydia, 26: 91115.Google Scholar
Leschen, R.A.B., and Lawrence, J.F. 1991. Fern sporophagy in Coleoptera from the Juan Fernandez Islands, Chile, with descriptions of two new genera in Cryptophagidae and Mycetophagidae. Systematic Entomology, 16: 329352.CrossRefGoogle Scholar
Linsley, E.G., and Macswain, J.W. 1959. Ethology of some Ranunculus insects with emphasis on competition for pollen. University of California Publications in Entomology, 16(1): 146.Google Scholar
Lloyd, D.G., and Wells, M.S. 1992. Reproductive biology of a primitive angiosperm, Pseudowintera colorata (Winteraceae), and the evolution of pollination systems in the Anthophyta. Plant Systematics and Evolution, 181:7795.CrossRefGoogle Scholar
Loyal, D.S., and Kumar, K. 1977. Utilization of Marsilea sporocarps as sham seeds by a weevil. American Fern Journal, 67: 95.CrossRefGoogle Scholar
Ludwig, P., Smola, U., and Melzer, R.R. 1996. Die Mundwerkzeuge des Wurmlöwen Vermileo vermileo L. und ihre Funktion (Diptera, Vermileonidae). Nachrichtenblatt der Bayerischen Entomologen, 45: 914.Google Scholar
Luo, Y.-B. and Li, Z.-Y. 1999. Pollination ecology of Chloranthus serratus (Thunb.) SRoem. et Schult. and Ch. fortunei (A. Gray) Solms-Laub. (Chloranthaceae). Annals of Botany, 83: 489499.Google Scholar
Luo, Z. 1999. Arefugium for relicts. Nature, 400: 2425.CrossRefGoogle Scholar
Mackerras, I.M. 1925. The Nemestrinidae (Diptera) of the Australasian Region. Proceedings of the Linnean Society of New South Wales, 50: 489561.Google Scholar
Mamay, S.H. 1976. Paleozoic origin of the cycads. United States Geological Survey Professional Paper, 934: 138.Google Scholar
Manning, J.C., and Goldblatt, P. 1996. The Prosoeca peringueyi (Diptera: Nemestrinidae) pollination guild in southern Africa: long-tongued flies and their tubular flowers. Annals of the Missouri Botanical Garden, 83: 6786.CrossRefGoogle Scholar
Manning, J.C., and Goldblatt, P. 1997. The Moegistorhynchus longirostris (Diptera: Nemestrinidae) pollination guild: long-tubed flowers and a specialized long-proboscid fly pollination system in southern Africa. Plant Systematics and Evolution, 206:5169.CrossRefGoogle Scholar
Marsh, B. 1982. An ecology study of Welwitschia mirabilis and its satellite fauna. Transvaal Museum Bulletin (Supplement), 4: 34.Google Scholar
Marshall, V.G. 1978. Gut content analysis of the collembolan Bourletiella hortensis (Fitch) from a forest nursery. Revue de Écologie et de Biologie du Sol, 15: 243250.Google Scholar
May, B.M. 1973. A new species of Megacolabus and descriptions of the immature stages of M. decipiens (Coleoptera: Curculionidae). Journal of the Royal Society of New Zealand, 3: 255262.CrossRefGoogle Scholar
Meeuse, A.D.J., De Meijer, A.H., Mohr, O.W.P., and Wellinga, S.M. 1990. Entomophily in the dioecious gymnosperm Ephedra aphylla Forsk. (=E. alte C.A. Mey.), with some notes on Ephedra campylopoda C.A. Mey. III. Further anthecological studies and relative importance of entomophily. Israel Journal of Botany, 39: 113123.Google Scholar
Meyen, S.V. 1984. Is Thuringia a gymnosperm synangium or a coprolite? Zeitschrift für Geologische Wissenschaften, 12: 269270.Google Scholar
Michener, C.D. 1974. The Social Behavior of the Bees: A Comparative Study. Harvard University Press, Cambridge, MA.Google Scholar
Michener, C.D. 1979. The biogeography of the bees. Annals of the Missouri Botanical Garden, 66: 277347.CrossRefGoogle Scholar
Michener, C.D., and Grimaldi, D.A. 1988. The oldest fossil bee: apoid history, evolutionary stasis, and antiquity of social behavior. Proceedings of the National Academy of Sciences USA, 85: 64246426.CrossRefGoogle ScholarPubMed
Morrone, J.J. 1996. Austral biogeography and relict weevil taxa (Coleoptera: Nemonychidae, Belidae, Brentidae, and Caridae). Journal of Comparative Biology, 1: 123127.Google Scholar
Morrone, J.J. 1997. Weevils (Coleoptera: Curculionoidea) that feed on Araucaria araucana (Araucariaceae) in southern Chile and Argentina, with an annotated checklist. Folia Entomologica Méxicana, 100: 114.Google Scholar
Mostovski, M.B. 1998. A revision of the nemestrinid flies (Diptera, Nemestrinidae) described by Rohdendorf, and a description of new taxa of the Nemestrinidae from the Upper Jurassic of Kazakhstan. Paleontological Journal, 32: 369375.Google Scholar
Mound, L.A. 1991. The first thrips species (Insecta, Thysanoptera) from cycad male cones, and its family level significance. Journal of Natural History, 25: 647652.CrossRefGoogle Scholar
Mound, L.A., and Palmer, J.M. 1990. Two new Thripinae (Thysanoptera) from the male flowers of Araucaria and Casuarina in Australia and Hawaii. Entomologist's Monthly Magazine, 126: 17.Google Scholar
Moussel, B. 1980. Gouttelette réceptrice du pollen et pollinisation chez l'Ephedra distachya L. Observations sur le vivant et en microscopie photonique et életronique. Revue de Cytologie et de Biologie Vegetales, Le Botaniste, 3: 6589.Google Scholar
Müller, A. 1996. Morphological specializations in central European bees for the uptake of pollen from flowers with anthers hidden in narrow corolla tubes (Hymenoptera: Apoidea). Entomologia Generalis, 20: 4357.CrossRefGoogle Scholar
Nagamitsu, T., and Inoue, T. 1997. Cockroach pollination and breeding system of Uvaria elmeri (Annonaceae) in a lowland mixed-dipterocarp forest in Sarawak. American Journal of Botany, 84: 208213.CrossRefGoogle Scholar
Naito, T. 1988. Systematic position of the genus Rocalia (Hymenoptera Tenthredinidae) feeding on fern spores, with description of a new species from Japan. Kontyû, 56: 798804.Google Scholar
Needham, J.G. 1947. A moth larva that lives on fern spores (Lepidoptera: Heliodinidae). Proceedings of the Entomological Society of Washington, 49: 165166.Google Scholar
Nicholson, S.W. 1994. Pollen feeding in the eucalypt nectar fly, Drosophila flavohirta . Physiological Entomology, 19: 5860.CrossRefGoogle Scholar
Nilsson, L.A., Jonsson, L., Ralison, L., and Randrianjohany, E. 1987. Angraecoid orchids and hawkmoths in central Madagascar: specialized pollination systems and generalist foragers. Biotropica, 19: 310318.CrossRefGoogle Scholar
Nishida, H., and Hayashi, N. 1996. Cretaceous coleopteran larva fed on female fructification of extinct gymnosperm. Journal of Plant Research, 109: 327330.CrossRefGoogle Scholar
Norstog, K.J. 1987. Cycads and the origin of insect pollination. American Scientist, 75: 270279.Google Scholar
Norstog, K.J., Fawcett, P.K.S., Nicholls, T.J., Vovides, A.P., and Espinosa, E. 1995. Insect-pollination of cycads: evolutionary and ecological considerations, p. 265285. In Vorster, P. (ed.), Proceedings of the Third International Conference on Cycad Biology. Cycad Society of South Africa, Stellenbosch South Africa.Google Scholar
Norstog, K.J., and Nicholls, T.J. 1997. The Biology of Cycads. Cornell University Press, Ithaca, NY.Google Scholar
Novokshonov, V.G. 1998. The fossil insects of Chekarda, p. 2554. In Ponomaryova, G.Y., Novokshonov, V.G., and Naukolnykh, S.V. (eds.), Chekarda—The Locality of Permian Fossil Plants and Insects. Permian University Press, Perm, Russia [in Russian].Google Scholar
Nozaki, T., and Shimada, T. 1997. Nectar feeding by adults of Nothopsyche ruficollis (Ulmer) (Trichoptera: Limnephilidae) and its effect on their reproductionk, p. 379386 In Holzenthal, R.W. and Flint, O.S. Jr. (eds.), Proceedings of the 8th International Symposium on Trichoptera. Ohio Biological Survey, Columbus.Google Scholar
Oberprieler, R.G. 1999. Systematics and evolution of the cycad associated weevil genus Apinotropis Jordan (Coleoptera: Anthribidae). African Entomology, 7: 133.Google Scholar
Ollerton, J. 1996. Reconciling ecological processes with phylogenetic patterns: the apparent paradox of plant-pollinator systems. Journal of Ecology, 84: 767769.CrossRefGoogle Scholar
Ollerton, J. 1999. The evolution of pollinator-plant relationships within the arthropods. Boletin de la Sociedad Entomólogica Aragonesa, 26: 741758.Google Scholar
Ollerton, J., and Liede, S. 1997. Pollination systems in the Asclepiadaceae: a survey and preliminary analysis. Biological Journal of the Linnean Society, 62: 593610.CrossRefGoogle Scholar
Ordetx, G.S.R. 1952. Flora Apicola de la America Tropical. Editorial Lex, Havana.Google Scholar
Ornduff, R. 1991. Size classes, reproductive behavior, and insect associates of Cycas media (Cycadaceae) in Australia. Botanical Gazette, 152: 203207.CrossRefGoogle Scholar
Owen, D.F. 1993. Equisetum-feeding larvae of Panaxia (Callimorpha) dominula (L.) (Lepidoptera: Arctiidae). Entomologist's Gazette, 44: 163166.Google Scholar
Parker, R. 1926. The collection and utilization of pollen by the honeybee. Cornell University Agricultural Experiment Station Memoir, 98: 155.Google Scholar
Parmenter, L. 1956. Flies and their selection of the flowers they visit. Entomologist's Record, 68: 242243.Google Scholar
Patt, J.M., Hamilton, G.C., and Lashomb, J.H. 1997. Foraging success of parasitoid wasps on flowers: interplay of insect morphology, floral architecture and searching behavior. Entomologia Experimentalis et Applicata, 83: 2130.CrossRefGoogle Scholar
Paulay, G. 1985. Adaptive radiation on an isolated oceanic island: the Cryptorhynchinae (Curculionidae) of Rapa revisited. Biological Journal of the Linnean Society, 26: 95187.CrossRefGoogle Scholar
Peakall, R., Beattie, A.J., and James, S.H. 1987. Pseudocopulation of an orchid by male ants: a test of two hypotheses accounting for the rarity of ant pollination. Oecologia, 73: 522524.CrossRefGoogle ScholarPubMed
Peakall, R., Handel, S.N., and Beattie, A.J. 1991. The evidence for, and importance of, ant pollination, p. 421429. In Huxley, C.R. and Cutler, D.F. (eds.), Ant-Plant Interactions. Oxford University Press, Oxford, U.K. Google Scholar
Pederson, K. R., Friis, E.M., and Crane, P.R. 1993. Pollen organs and seeds with Decussosporites Brenner from Lower Cretaceous Potomac Group sediments of eastern USA. Grana, 32: 273289.CrossRefGoogle Scholar
Pellmyr, O., Thompson, J.N., Brown, J.H., and Harrison, R.G. 1996a. Evolution of pollination and mutualism in the yucca moth lineage. American Naturalist, 148: 827847.CrossRefGoogle Scholar
Pellmyr, O., Leebens-Mack, J., and Huth, C.J. 1996b. Non-mutualistic yucca moths and their evolutionary consequences. Nature, 380: 155156.CrossRefGoogle ScholarPubMed
Pellmyr, O., Leebens-Mack, J., and Huth, C.J. 1999. Forty million years of mutualism: Evidence for Eocene origin of the yucca-yucca moth association. Proceedings of the National Academy of Sciences USA, 96: 91789183.CrossRefGoogle ScholarPubMed
Pellmyr, O., Thien, L.B., Bergström, G., and Groth, I. 1990. Pollination of New Caledonian Winteraceae: opportunistic shifts or parallel radiation with their pollinators? Plant Systematics and Evolution, 173: 143157.CrossRefGoogle Scholar
Peng, Y.-S., Nasr, M.E., Marston, J.M., and Fang, Y. 1985. The digestion of dandelion pollen by adult worker honeybees. Physiological Entomology, 10: 7582.CrossRefGoogle Scholar
Peterson, E., and Hasselrot, A.T. 1994. Mating and nectar feeding in the psychomyiid caddis fly Tinodes waeneri . Aquatic Insects, 16: 177187.CrossRefGoogle Scholar
Picker, M.D., and Midgley, J.J. 1996. Pollination by monkey beetles (Coleoptera: Scarabaeidae: Hopliini): flower and colour preferences. African Entomology, 4: 714.Google Scholar
Piggott, C.D. 1958. Biological flora of the British Isles. Polemonium caeruleum L. Journal of Ecology, 46: 507525.CrossRefGoogle Scholar
Van Der Pijl, L. 1953. On the flower biology of some plants from Java with general remarks on fly-traps (species of Annona, Artocarpus, Typhonium, Gnetum, Arisaema and Abroma). Annales Bogorienses, 1: 7799.Google Scholar
Porsch, O. 1916. Der Nektartropfen von Ephedra campylopoda C.A. Me. Berichte der Deutsche Botanische Gesellschaft, 34: 202212.Google Scholar
Porsch, O. 1958. Alte Insektentypen als blumenasubeuter. Österreische Botanische Zeitschrift, 104: 115165.CrossRefGoogle Scholar
Potonié, H. 1891. Die “extranuptialen” Nectarien bei Adlerfarn. Naturwissenschaftliche Wochenschrift, 4: 401402.Google Scholar
Powell, J.A., Mitter, C., and Farrell, B. 1999. Evolution of larval food preferences in Lepidoptera. In: Kristensen, N.P., (ed.), Volume 1: Evolution, systematics, and biogeography. Handbuch der Zoologie, 4(35):403422. Walter de Gruyter, Berlin.Google Scholar
Proctor, M., Yeo, P., and Lack, A. 1996. The Natural History of Pollination. Timber Press, Portland, OR.Google Scholar
Qiu, Y.-L., Lee, J., Bernasconi-Quadroni, F., Soltis, D.E., Soltis, P.S., Zanis, M., Zimmer, E. A., Chen, Z., Savolainen, V., Chase, M.W. 1999. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature, 402: 404407.CrossRefGoogle ScholarPubMed
Rashbrook, V.K., and Compton, S.G. 1992. Ant-herbivore interactions: reasons for the absence of benefits to a fern with foliar nectaries. Ecology, 73: 21672174.Google Scholar
Rasnitsyn, A.P. 1977. New Paleozoic and Mesozoic insects. Paleontological Journal, 11: 6072.Google Scholar
Rasnitsyn, A.P. 1980. Origin and evolution of the Hymenoptera (Insecta). Transactions of the Paleontological Institute, 174: 1191 [in Russian].Google Scholar
Rasnitsyn, A.P. 1988. An outline of evolution of the hymenopterous insects (order Vespida). Oriental Insects, 22: 115145.CrossRefGoogle Scholar
Rasnitsyn, A.P. and Krassilov, V.A. 1996a. First find of pollen grains in the gut of Permian insects. Paleontological Journal, 30: 484490.Google Scholar
Rasnitsyn, A.P. and Krassilov, V.A. 1996b. Pollen in the gut contents of fossil insects as evidence of coevolution. Paleontological Journal, 30: 716722.Google Scholar
Rayner, R.H., and Waters, S.B. 1991. Floral sex and the fossil insect. Naturwissenschaften, 78: 280282.CrossRefGoogle Scholar
Ren, D. 1998. Flower-associated Brachycera flies as fossil evidence for Jurassic angiosperm origins. Science, 280: 8588.CrossRefGoogle Scholar
Reymanówna, M. 1960. A cycadeoidean stem from the western Carpathians. Acta Palaeobotanica, 1: 328.Google Scholar
Richardson, E.S. Jr. 1980. Life at Mazon Creek, p. 217224. In Langenheim, R.L. Jr. and Mann, C.J., (eds.), Middle and Late Pennsylvanian Strata of [the] Margin of [the] Illinois Basin. University of Illinois Press, Urbana, IL.Google Scholar
Rohdendorf, B.B., 1968. New Mesozoic nemestrinids (Diptera, Nemestrinidae), p. 180189. In Rohdendorf, B.B., (ed.), Jurassic Insects of Karatau. Academy of Sciences, Moscow [in Russian].Google Scholar
Rohdendorf, B.B., and Rasnitsyn, A.P. 1980. Historical development of the class Insecta. Transactions of the Paleontological Institute, 85: 1258 [in Russian].Google Scholar
Rothwell, G.W. 1977. Evidence for a pollination-drop mechanism in Paleozoic pteridosperms. Science, 198: 12511252.CrossRefGoogle ScholarPubMed
Rothwell, G.W., and Scott, A.C. 1988. Heterotheca Benson; lyginopterid pollen organs or coprolites? Bulletin of the British Museum of Natural History, Geology, 44: 4143.Google Scholar
Roubik, D.W. 1989. Ecology and Natural History of Tropical Bees. Cambridge University Press, Cambridge, U.K. CrossRefGoogle Scholar
Saiki, K. and Yoshida, Y. 1999. A new bennettitalean trunk with unilacunar five-track nodal structure from the Upper Cretaceous of Hokkaido, Japan. American Journal of Botany, 86: 326332.CrossRefGoogle Scholar
Schoonhoven, L.M., Jermy, T., and Van Loon, J.J.A. 1998. Insect-Plant Biology: From Physiology to Evolution. Chapman and Hall, London.CrossRefGoogle Scholar
Schopf, J.M. 1948. Pteridosperm male fructifications: American species of Dolerotheca, with notes regarding certain allied forms. Journal of Paleontology, 22: 681724.Google Scholar
Schuster, J.C. 1974. Saltatorial Orthoptera as common visitors to tropical flowers. Biotropica, 6: 138140.CrossRefGoogle Scholar
Scott, A.C., and Paterson, S. 1984. Techniques for the study of plant/arthropod interactions in the fossil record. Geobios Mémoire Special, 8: 449455.CrossRefGoogle Scholar
Rohdendorf, B.B., Stephenson, J., and Chaloner, W.G. 1992. Interaction and coevolution of plants and arthropods during the Palaeozoic and Mesozoic. Philosophical Transactions of the Royal Society of London B, 335: 129165.Google Scholar
Scott, A.C., and Taylor, T.N. 1983. Plant/animal interactions during the Upper Carboniferous. Botanical Review, 49: 259307.CrossRefGoogle Scholar
Sharma, M. 1970. An analysis of pollen loads of honey bees from Kangra, India. Grana, 10: 3542.CrossRefGoogle Scholar
Shear, W.A., and Kukalová-Peck, J. 1990. The ecology of Paleozoic terrestrial arthropods: the fossil evidence. Canadian Journal of Zoology, 68: 18071834.CrossRefGoogle Scholar
Simpson, B.B., and Neff, J.L. 1983. Evolution and diversity of floral rewards, p. 142159. In Jones, C.E. and Little, R.J. (eds.), Handbook of Experimental Pollination Biology. Van Nostrand Reinhold, New York.Google Scholar
Sims, I. 1999. An unusual habit of Micropterix tunbergella (Fabr.) (Lep.: Micropterygidae). Entomologist's Record and Journal of Variation, 111: 9798.Google Scholar
Smith, J.J.B. 1985. Feeding mechanisms, p. 3385. In Kerkut, G.A. and Gilbert, L.E. (eds.), Comprehensive Insect Physiology, Biochemistry, and Pharmacology, Volume 4. Oxford University Press, Oxford, U.K. Google Scholar
Soltis, D.E., Soltis, P.S., Nickrent, D.L., Johnson, L.A., Hahn, W.J., Hoot, S.B., Sweere, J.A., Kuzoff, R.K., Kron, K.A., Chase, M.W., Swensen, S.M., Zimmer, E.A., Chaw, S.-M., Gillespie, L.J., Kress, W.J., and Sytsma, K.J. 1997. Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. Annals of the Missouri Botanical Garden, 84: 149.CrossRefGoogle Scholar
Southwood, T.R.E. 1973. The insect-plant relationship—an evolutionary perspective. Symposium of the Royal Entomological Society of London, 6: 330.Google Scholar
Srivastava, D.S., Lawton, J.H., and Robinson, G.S. 1997. Spore-feeding: a new, regionally vacant niche for bracken herbivores. Ecological Entomology, 22: 475478.CrossRefGoogle Scholar
Stelleman, P., and Meeuse, A.D.J. 1976. Anthecological relations between reputedly anemophilous flowers and syrphid flies. I. The possible role of syrphid flies as pollinators of Plantago . Tijdschift voor Entomologie, 119: 1531.Google Scholar
Sun, G., Dilcher, D.L., Sheng, S., and Zhou, Z. 1998. In search of the first flower: a Jurassic angiosperm, Archaefructus, from northeast China. Science, 282: 16921695.CrossRefGoogle Scholar
Takhtajan, A. 1991. Evolutionary Trends in Flowering Plants. Columbia University Press, New York.Google Scholar
Taylor, D.W., and Crepet, W.L. 1987. Fossil floral evidence of Malpighiaceae and an early plant-pollinator relationship. American Journal of Botany, 74: 274286.Google Scholar
Thorp, R.W. 1979. Structural, behavioral, and physiological adaptations of bees (Apoidea) for collecting pollen. Annals of the Missouri Botanical Garden, 66: 788812.CrossRefGoogle Scholar
Tomlinson, P.B., Braggins, J.E., and Rattenbury, J.A. 1991. Pollination drop in relation to cone morphology in Podocarpaceae: a novel reproductive mechanism. American Journal of Botany, 78: 12891303.CrossRefGoogle Scholar
Tooker, J.F., and Hanks, L.M. 2000. Flowering plant hosts of adult hymenopteran parasitoids of central Illinois. Annals of the Entomological Society of America, 93: 580588.CrossRefGoogle Scholar
Vilhelmsen, L. 1996. The preoral cavity of lower Hymenoptera (Insecta): comparative morphology and phylogenetic significance. Zoologica Scripta, 25: 143170.CrossRefGoogle Scholar
Vishniakova, V.N. 1981. New Paleozoic and Mesozoic lophioneurids (Thripida, Lophioneuridae). Transactions of the Paleontological Institute, 183: 4363 [in Russian].Google Scholar
Vrsansky, P., Storozhenko, S.Y., Labandeira, C.C., and Ihringova, P. 2001. Galloisiana olgae gen. et sp. nov. (Grylloblattodea: Grylloblattidae) and the paleobiology of a relict order of insects. Annals of the Entomological Society of America. Submitted .CrossRefGoogle Scholar
Waldorf, E. 1981. The utilization of pollen by a natural population of Entomobrya socia . Revue d'Écologie et de Biologie du Sol, 18: 397402.Google Scholar
Waser, N.M., Chittka, L., Price, M.V., Williams, N., and Ollerton, J. 1996. Generalization in pollination systems, and why it matters. Ecology, 77: 10431060.CrossRefGoogle Scholar
Weintraub, J.D., Lawton, J.H., and Scoble, M.J. 1995. Lithinine moths on ferns: a phylogenetic study of insect-plant interactions. Biological Journal of the Linnean Society, 55: 239250.CrossRefGoogle Scholar
Whalley, P.E.S. 1986. A review of the current fossil evidence of Lepidoptera in the Mesozoic. Biological Journal of the Linnean Society, 28: 253271.CrossRefGoogle Scholar
Whitcomb, W. 1929. Mechanics of digestion of pollen by the adult honey bee and the relation of undigested parts to dysentery of bees. Wisconsin Research Bulletin, 92: 127.Google Scholar
Willemstein, S.C. 1987. An evolutionary basis for pollination ecology. Leiden Botanical Series, 10: 1425.Google Scholar
Wilson, B.H., and Lieux, M. 1972. Pollen grains in the guts of field collected tabanids in Louisiana. Annals of the Entomological Society of America, 65: 12641266.CrossRefGoogle Scholar
Wilson, E.O., Carpenter, F.M., and Brown, W.L. 1967. The first Mesozoic ants. Science, 157: 10381040.CrossRefGoogle ScholarPubMed
Wilson, G. W. 1993. Initial observations of the reproductive behaviour and an insect pollination agent of Bowenia serrulata (W. Bull) Chamberlain. Encephalartos, 36: 1318.Google Scholar
Windsor, D., Ness, J., Gomez, L.D., and Jolivet, P.H. 1999. Species of Aulacoscelis Duponchel and Chevrolat (Chrysomelidae) and Nomotus Gorham (Languriidae) feed on fronds of Central American cycads. Coleopterists Bulletin, 53: 217231.Google Scholar
Wootton, R.J. 1990. Major insect radiations. Systematics Association Special Volume, 42: 187208.Google Scholar
Yeates, D.K., and Wiegmann, B.M. 1999. Congruence and controversy: toward a higher-level phylogeny of Diptera. Annual Review of Entomology, 44: 397428.CrossRefGoogle Scholar
Young, A.M., Schaller, M., and Strand, M. 1984. Floral nectaries and trichomes in relation to pollination in some species of Theobroma and Herrania (Sterculiaceae). American Journal of Botany, 71: 466480.CrossRefGoogle Scholar
Zaitzev, V.F. 1998. Emergence and evolution of anthophily in Dipteral, p. 154255. In Ismay, J.W. (ed.), Abstracts Volume of the Fourth International Congress of Dipterology. The Congress, Oxford, U.K. Google Scholar
Zeuner, F. 1927. Eine Sphingidenraupe aus dem Obermiozän von Böttingen. Paläontologische Zeitschrift, 8: 321326.CrossRefGoogle Scholar
Zeuner, F. and Manning, F.J. 1976. A monograph of fossil bees (Hymenoptera: Apoidea). British Museum (Natural History), Geology Bulletin, 27: 149268.Google Scholar
Zur Strassen, R. 1973. Insektenfossilien aus der unteren Kreide. 5. Fossile Fransflüger aus mesozoischem Bernstein des Libanon (Insecta: Thysanoptera). Stuttgarter Beiträge zur Naturkunde, 256: 151.Google Scholar