Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T13:15:18.684Z Has data issue: false hasContentIssue false

Measuring Earth-Life Transitions: Ecometric Analysis of Functional Traits from Late Cenozoic Vertebrates

Published online by Cambridge University Press:  21 July 2017

P. David Polly
Affiliation:
Departments of Geological Sciences, Biology, and Anthropology, Indiana University, 1001 E. 10th Street, Bloomington, IN 47405 USA
Jason J. Head
Affiliation:
Department of Zoology, Downing Street, University of Cambridge, CB2 3EJ United Kingdom
Get access

Abstract

Ecometrics is the quantitative study of functional traits at the community level, and the environmental sorting of those traits at regional and continental scales. Functional traits are properties of organisms that have a direct physical or physiological relationship to an underlying quality of the environment, which in turn has indirect links to broader environmental factors such as temperature, precipitation, elevation, atmospheric composition, or sea level. When the same environmental factor affects the performance of many taxa, ecometric sorting is the result. Ecometric patterns in trait distributions across space and through time are therefore a product of biogeographic sorting, evolution, and extinction driven by changes in Earth systems. We review concepts associated with ecometrics, with examples that illustrate how trait-based approaches differ from taxon-based methods, how ecometrics can be used to study Earth-life transitions in the fossil record, and how ecometrics can be used to compare Earth-life transitions that differ in temporal or geographic scale. This paper focuses on the climatic and biome changes of the Great Plains of North America during the Miocene, when grasslands came to be the dominant vegetation type, and of the Anthropocene of the American Midwest, which saw extensive landscape changes in the nineteenth century.

Type
Research Article
Copyright
Copyright © 2015 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerly, D. D., and Cornwell, W. K. 2007. A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecology Letters, 10:135145.CrossRefGoogle ScholarPubMed
Andrews, P., and Hixson, S. 2014. Taxon-free methods in palaeoecology. Annales Zoologici Fennici, 51:269284.CrossRefGoogle Scholar
Blanckenthorn, W. U. 2000. The evolution of body size: what keeps organisms small? Quarterly Review of Biology, 75:385407.CrossRefGoogle Scholar
Böhme, M. 2003. The Miocene climatic optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 195:389401.Google Scholar
Böhme, M. 2008. Ectothermic vertebrates (Teleosti, Allocaudata, Urodela, Anura, Testudines, Choristodera, Crocodylia, Squamata) from the Upper Oligocene of Oberleichtersbach (Northern Bavaria, Germany). Courier Forschungsinstitut Senckenberg, 260:161183.Google Scholar
Böhme, M. 2010. Ectothermic vertebrates (Actinopterygii, Allocaudata, Urodela, Anura, Crocodylia, Squamata) from the Miocene of Sandelzhausen (Germany, Bavaria) and their implications for environment reconstruction and palaeoclimate. Paläontologische Zeitschrift, 84:341.Google Scholar
Box, G. E. P., and Tiao, G. C. 1992. Bayesian Inference in Statistical Analysis. John Wiley and Sons, New York.Google Scholar
Butler, A. W. 1895. Indiana: a century of changes in the aspects of nature. Proceedings of the Indiana Academy of Sciences, 5:3142.Google Scholar
Cerling, T. E., and Quade, J. 1993. Stable carbon and oxygen isotopes in soil carbonate, p. 217231 In Swart, P. K., Lohmann, K. C., McKenzie, J., and Savin, S. (eds.), Climate Change in Continental Isotopic Records. American Geophysical Union Geophysical Monograph 78.Google Scholar
Chapin, F. S. III. 1993. Functional role of growth forms in ecosystem and global processes, p. 287312 In Ehleringer, J. H. and Field, C. B. (eds.), Scaling Physiological Processes: Leaf to Globe. Academic Press, San Diego, California.CrossRefGoogle Scholar
Damuth, J. 1985. Selection among “species”: a formulation in terms of natural functional units. Evolution, 39:11321146.Google ScholarPubMed
Damuth, J., and Janis, C. M. 2011. On the relationship between hypsodonty and feeding ecology in ungulate mammals, and its utility in palaeoecology. Biological Reviews, 86:733758.Google Scholar
Damuth, J. D., Jablonski, D., Harris, R. M., Potts, R., Stucky, R. K., Sues, H.-D., and Weishampel, D. B. 1992. Taxon-free characterization of animal communities, p. 183203 In Beherensmeyer, A. K., Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H. D., and Wing, S. L. (eds.). Terrestrial Ecosystems Through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals. University of Chicago Press, Chicago, Illinois.Google Scholar
Diamond, J. M. 1975. Assembly of species communities, p. 342444 In Cody, M. L. and Diamond, J. M. (eds.), Ecology and Evolution of Communities. Harvard University Press, Cambridge, Massachusetts.Google Scholar
Edwards, E. J., Osborne, C. P., Strömberg, C. A. E., S. A. Smith, and C4 Grass Consortium. 2010. The origin of C4 grasslands: Integrating evolutionary and ecosystem science. Science, 328:587591.CrossRefGoogle ScholarPubMed
Eronen, J. T., Polly, P. D., Fred, M., Damuth, J., Frank, D. C., Mosbrugger, V., Scheidegger, C., Stenseth, N. C., and Fortelius, M. 2010a. Ecometrics: The traits that bind the past and present together. Integrative Zoology, 5:88101.Google Scholar
Eronen, J. T., Puolamaki, K., Liu, L., Lintulaakso, K., Damuth, J., Janis, C. M., and Fortelius, M.M. 2010b. Precipitation and large herbivorous mammals. I. Estimates from present-day communities. Evolutionary Ecology Research, 12:217233.Google Scholar
Eronen, J. T., Puolamaki, K., Liu, L., Lintulaakso, K., Damuth, J., Janis, C. M., and Fortelius, M. 2010c. Precipitation and large herbivorous mammals. II. Applications to fossil data. Evolutionary Ecology Research, 12:235248.Google Scholar
Eronen, J. T., Janis, C. M., Chamberlain, C. P., and Mulch, A. 2015. Mountain uplift explains differences in Palaeogene patterns of mammalian evolution and extinction between North America and Europe. Proceedings of the Royal Society B, 282:20150136.CrossRefGoogle Scholar
Flower, B. P., and Kennett, J. P. 1993. Middle Miocene ocean-climate transition: High-resolution oxygen and carbon isotopic records from deep sea drilling project site 588A, southwest Pacific. Paleoceanography, 8:811843.CrossRefGoogle Scholar
Flower, B. P., and Kennett, J. P. 1994. The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology, 108:537555.CrossRefGoogle Scholar
Fortelius, M. 1985. Ungulate cheek teeth: developmental, functional, and evolutionary interrelations. Acta Zoologica Fennica, 180:176.Google Scholar
Fortelius, M., Eronen, J. T., Jernvall, J., Liu, L., Pushkina, D., Rinne, J., Tesakov, A., Vislobokova, I., Zhang, Z., and Zhou, L. 2002. Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evolutionary Ecology Research 4:10051016.Google Scholar
Fortelius, M, Eronen, J. T., Kaya, F., Tang, H., Raia, P., and Puolamăki, K. 2014. Evolution of Neogene mammals in Eurasia: environmental forcing and biotic interactions. Annual Reviews of Earth and Planetary Science, 42:579604.Google Scholar
Fox, D. L., and Koch, P. L. 2003. Tertiary history of C4 biomass in the Great Plains, USA. Geology, 31:809812.CrossRefGoogle Scholar
Fox, D. L., and Koch, P. L. 2004. Carbon and oxygen isotope variability in Neogene paleosol carbonates: constraints on the evolution of the C4-grasslands of the Great Plains, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 207:305329.Google Scholar
Fox, D. L., Honey, J., Martin, R. A., and Peláez-Camponmanes, P. 2012a. Pedogenic carbonate stable isotopic record of environmental change during the Neogene in the southern Great Plains, southwest Kansas, USA: Oxygen isotopes and paleoclimate during the evolution of C4-domianted grasslands. Geological Society of America Bulletin, 124:431443.CrossRefGoogle Scholar
Fox, D. L., Honey, J., Martin, R. A., and Peláez-Camponmanes, P. 2012b. Pedogenic carbonate stable isotopic record of environmental change during the Neogene in the southern Great Plains, southwest Kansas, USA: Carbon isotopes and the evolution of C4-domianted grasslands. Geological Society of America Bulletin, 124:444462.Google Scholar
Fox, D. L., Martin, R. A., Roepke, E., Fetrow, A. C., Fischer-Femal, B., Uno, K. T., Fox-Dobbs, K., Snell, K. E., Haveles, A., and Polissar, P. J. 2015. Biotic and abiotic forcing during the transition to modern grassland ecosystems: evolutionary and ecological responses of small mammal communities over the last 5 million years, p. 197218 In Polly, P. D., Head, J. J., and Fox, D. L. (eds.), Earth-Life Transitions: Paleobiology in the Context of Earth System Evolution. The Paleontological Society Papers 21. Yale Press, New Haven, CT.Google Scholar
Fraser, D., and Theodor, J. M. 2012. Ungulate diets reveal patterns of grassland evolution in North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 369:409421.CrossRefGoogle Scholar
Gans, C. 1993. On the merits of adequacy. American Journal of Science, 293A:391406.Google Scholar
Gau, R. J., Case, R., Penner, D. F., and McLoughlin, P. D. 2002. Feeding patterns of barren-ground Grizzly bears in the central Canadian Arctic. Arctic, 55:339344.Google Scholar
Ghiselin, M. T. 1974. A radical solution to the species problem. Systematic Zoology, 23:536544.CrossRefGoogle Scholar
Grandjouan, G., Cour, P., and Gros, R. 2000. A probabilistic model of the relations between pollen and climate and its application to 80 European annual spectra. Plant Ecology, 147:147163.Google Scholar
Hadly, E. A., Spaeth, P. A., and Li, C. 2009. Niche conservatism above the species level. Proceedings of the National Academy of Sciences USA, 106:1970719714.Google Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R. 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235:11561167.Google Scholar
Harris, M. A., and Steudel, K. 2002. The relationship between maximum jumping performance and hind limb morphology/physiology in domestic cats (Felis sylvestris catus). Journal of Experimental Biology, 205:38773889.Google Scholar
Harris, M. A., and Steudel, K. 2009. Ecological correlates of hind-limb length in the Carnivora. Journal of Zoology, 241:381408.Google Scholar
Head, J. J. 2010. Climatic inferences from extant and fossil reptiles: toward a metabolic paleothermometer. American Geophysical Union Fall Meeting Abstracts, B51F–0412.Google Scholar
Head, J. J., Bloch, J. I., Hastings, A. K., Bourque, J. R., Cadena, E. A., Herrera, F. A., Polly, P. D., and Jaramillo, C. A. 2009. Giant boid snake from the Paleocene neotropics reveals hotter past equatorial temperatures. Nature, 457:715717.Google Scholar
Head, J. J., Gunnell, G. F., Holroyd, P. A., Hutchison, J. H., and Ciochon, R. L. 2013. Giant lizards occupied herbivorous mammalian ecospace during the Paleogene greenhouse in Southeast Asia. Proceedings of the Royal Society of London B, 280:20130665.Google Scholar
Hoffmann, A., and Merilä, A. J. 1999. Heritable variation and evolution under favourable and unfavourable conditions. Trends in Ecology and Evolution, 14:96101.Google Scholar
Hokr, Z. 1951. A method of the quantitative determination of the climate in the Quaternary period by means of mammal associations. Sborník of the Geological Survey of Czechoslovakia, 18:209219.Google Scholar
Hunt, G., and Rabosky, D. L. 2010. Phenotypic evolution in fossil species: pattern and process. Annual Review of Earth and Planetary Science, 42:421441.CrossRefGoogle Scholar
Hurley, P. M., Webster, C. R., Flaspohler, D. J., and Parker, G. R. 2012. Untangling the landscape of deer overabundance: Reserve size versus landscape context in the agricultural Midwest. Biological Conservation, 146:6271.Google Scholar
Hutchinson, G. 1957. Concluding remarks. Cold Spring Harbor Symposium on Quantitative Biology, 22:415427.Google Scholar
Jablonski, D. 2008. Species selection: theory and data. Annual Reviews of Ecology, Evolution, and Systematics, 39:501524.Google Scholar
Jackson, M. T. 1997. The Natural Heritage of Indiana. Indiana University Press, Bloomington, Ind. Google Scholar
Janis, C. M., and Fortelius, M. 1988. On the means whereby mammals achieve increased functional durability of their dentition with special reference to limiting factors. Biological Reviews, 63:197230.Google Scholar
Janis, C. M., and Wilhelm, P. D. 1993. Were there mammalian pursuit predators in the Tertiary? Dances with wolf avatars. Journal of Mammalian Evolution, 1:103125.Google Scholar
Janis, C. M., Damuth, J., and Theodor, J. M. 2000. Miocene ungulates and terrestrial primary productivity: Where have all the browsers gone? Proceedings of the National Academy of Sciences, USA, 97:78997904.CrossRefGoogle ScholarPubMed
Janis, C. M., Damuth, J., and Theodor, J. M. 2002. The origins and evolution of the North American grassland biome: the story from the hoofed mammals. Palaeogeography, Palaeoclimatology, Palaeoecology, 177:183198.Google Scholar
Janis, C. M., Damuth, J., and Theodor, J. M. 2004. The species richness of Miocene browsers, and implications for habitat type and primary productivity in the North American grassland biome. Palaeogeography, Palaeoclimatology, Palaeoecology, 207:371398.Google Scholar
Jardine, P. E., Janis, C. M., Sahney, S., and Benton, M. J. 2012. Grit not grass: concordant patterns of early origin of hypsodonty in Great Plains ungulates and glires. Palaeogeography, Palaeoclimatology, Palaeoecology, 365:110.Google Scholar
Jønsson, K. A., Lessard, J.-P., and Ricklefs, R. E. 2015. The evolution of morphological diversity in continental assemblages of passerine birds. Evolution, 69:879889.Google Scholar
Kearney, M., and Porter, W. P. 2004. Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard. Ecology, 85:31193131.Google Scholar
Kearney, M., and Porter, W. P. 2009. Mechanistic niche modeling: Combining physiological and spatial data to predict species' ranges. Ecology Letters, 12:334350.Google Scholar
King, S. J., Arrigo-Nelson, S. J., Pochron, S. T., Semprebon, G. M., Godfrey, L. R., Wright, P. C., and Jernvall, J. 2004. Dental senescence in a long-lived primate links infant mortality to rainfall. Proceedings of the National Academy of Science USA, 102:1657916583.Google Scholar
Klein, D. R., Meldgaard, M., and Fancy, S. G. 1987. Factors determining leg length in Rangifer tarandus . Journal of Mammalogy, 68:642655.Google Scholar
Kunstler, G., Lavergne, S., Courbaud, B., Thullier, W., Vieilledent, G., Zimmermann, N. E., Kattge, J., and Coomes, D. A. 2012. Competitive interactions between forest trees are driven by species' trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly. Ecology Letters, 15:831840.CrossRefGoogle ScholarPubMed
Kürschner, W. M., Kvacek, Z., and Dilcher, D. L. 2008. The impact of Miocene atmospheric carbone dioxide on climate and the evolution of terrestrial ecosystems. Proceedings of the National Academy of Sciences, USA, 105:449453.Google Scholar
Lahti, D. C., Johnson, N. A., Ajie, B. C., Otto, S. P., Hendry, A. P., Blumstein, D. T., Coss, R. G., Donoghue, K., and Foster, S. A. 2009. Relaxed selection in the wild. Trends in Ecology and Evolution, 24:487496.Google Scholar
Lawing, A. M., and Polly, P.D. 2011. Pleistocene climate, phylogeny, and climate envelope models: an integrative approach to better understand species' response to climate change. PLoS ONE, 16:e28554.Google Scholar
Lawing, A. M., Head, J. J., and Polly, P. D. 2012. The ecology of morphology: the ecometrics of locomotion and macroenvironment in North American snakes, p. 117146 In Louys, J. (ed.), Palaeontology in Ecology and Conservation. Springer, New York.Google Scholar
Legendre, S. 1986. Analysis of mammalian communities from the Late Eocene and Oligocene of southern France. Palaeovertebrata, 16:191212.Google Scholar
Leopold, E. B., and Denton, M. F. 1987. Comparative age of grassland and steppe east and west of the northern Rocky Mountains. Annals of the Missouri Botanical Garden, 74:841867.Google Scholar
Lindsey, A. A., Crankshaw, W. B., and Qadir, S. A. 1965. Soil relations and distribution map of vegetation of presettlement Indiana. Botanical Gazette, 126:155163.Google Scholar
Mace, G. M., Norris, K., and Fitter, A. H. 2012. Biodiversity and ecosystem services: a multi-layered relationship. Trends in Ecology and Evolution, 27:1926.Google Scholar
MacFadden, B. J., and Cerling, T. E. 1994. Fossil horses, carbon isotopes and global change. Trends in Ecology and Evolution, 9:481486.CrossRefGoogle ScholarPubMed
Maguire, K. C., and Stigall, A. L. 2009. Using ecological niche modeling for quantitative biogeographic analysis: a case study of Miocene and Pliocene Equinae in the Great Plains. Paleobiology, 35:587611.Google Scholar
Makarieva, A. M., Gorshkov, V. G., and Li, L. 2005. Gigantism, temperature and metabolic rate in terrestrial poikilotherms. Proceedings of the Royal Society of London, Series B, 272:23252328.Google ScholarPubMed
Markwick, P. J. 1994. “Equability”, continentality, and Tertiary “climate”: The crocodilian perspective. Geology, 22:613616.Google Scholar
Markwick, P. J. 1998a. Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates: implications for using palaeontological data in reconstructing paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 137:205271.Google Scholar
Markwick, P. J. 1998b. Crocodilian diversity in space and time: The role of climate in paleoecology and its implications for understanding K/T extinction. Paleobiology, 24:470497.Google Scholar
Marshall, C. R., Lindsey, E. L., Villavicencio, N. A., and Barnosky, A. D. 2015. A quantitative model for distinguishing between climate change, human impact, and their synergistic interaction as drivers of the late-Quaternary megafaunal extinctions, p. 120 In Polly, P. D., Head, J. J., and Fox, D. L. (eds.), Earth-Life Transitions: Paleobiology in the Context of Earth System Evolution. The Paleontological Society Papers 21. Yale Press, New Haven, CT.Google Scholar
Matthews, E. 1983. Global vegetation and land use: New high-resolution data bases for climate studies. Journal of Climatology and Applied Meteorology, 22:474487.Google Scholar
Mayfield, M. M., Bonser, S. P., Morgan, J. W., Aubin, I., McNamara, S., and Vesk, P. A. 2010. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Global Ecology and Biogeography, 19:423431.Google Scholar
McGill, B. J., Enquist, B. J., Weiher, E., and Westoby, M. 2006. Rebuilding community from functional traits. Trends in Ecology and Evolution, 21:178185.Google Scholar
McNab, B. K. 1971. On the ecological significance of body size. Ecology, 52:845854.Google Scholar
McNab, B. K. 1990. The physiological significance of body size, p. 1123 In Damuth, J. and MacFadden, B. (eds.), Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge University Press, Cambridge, UK.Google Scholar
Merilä, J., and Fry, J. D. 1998. Genetic variation and causes of genotype-environment interaction in the body size of Blue Tit (Parus caeruleus). Genetics, 148:12331244.Google Scholar
Monserud, R. A., and Leemans, R. 1992. Comparing global vegetation maps with the Kappa statistic. Ecological Modelling, 62:275293.Google Scholar
Moore, G. C., and Parker, G. R. 1992. Colonization by the eastern coyote (Canis latrans), p. 2337 In Boer, A. H. (ed.), Ecology and Management of the Eastern Coyote. Wildlife Research Unit, University of New Brunswick, Fredericton, New Brunswick.Google Scholar
Morales-Castilla, I., Matias, M. G., Gravel, D., and Araújo, M. B. 2015. Inferring biotic interactions from proxies. Trends in Ecology and Evolution, 30:347356.Google Scholar
Munson, P. J., Parmalee, P. W., and Guilday, J. E. 1980. Additional comments on the Pleistocene mammalian fauna of the Harrodsburg Crevice, Monroe County, Indiana. National Speleological Society Bulletin, 42:7879.Google Scholar
Myers, C. E., Stigall, A. L., and Lieberman, B. S. 2015. PaleoENM: applying ecological niche modeling to the fossil record. Paleobiology, 41:226244.Google Scholar
Nix, H. A. 1986. A biogeographic analysis of Australian elapid snakes, p. 415 In Longemore, R. (ed.), Atlas of Elapid Snakes of Australia. Australian Flora and Fauna Series Number 7. Australian Government Publishing Service, Canberra, Australia.Google Scholar
Parmalee, P. W., Munson, P. J., and Guilday, J. E. 1978. The Pleistocene mammalian fauna of the Harrodsburg Crevice, Monroe County, Indiana. National Speleological Society Bulletin, 40:6475.Google Scholar
Passey, B. H., Cerling, T. E., Perkings, M. E., Voorhies, M. R., Harris, J. M., and Tucker, S. T. 2002. Environmental change in the Great Plains: an isotopic record from fossil horses. Journal of Geology, 110:123140.Google Scholar
Patterson, B. D., Ceballos, G., Sechrest, W., Tognelli, M. F., Brooks, T., Luna, L., Ortega, P., Salazar, I., and Young, B. E. 2005. Digital distribution maps of the mammals of the Western Hemisphere, Version 2.0. NatureServe, Arlington, Virginia, USA.Google Scholar
Patzkowsky, M. E., and Holland, S. M. 2012. Stratigraphic Paleobiology: Understanding the Distribution of Fossil Taxa in Time and Space. University of Chicago Press, Chicago, Illinois.Google Scholar
Peterson, A.T. 2001. Predicting species' geographic distributions based on ecological niche modeling. Condor, 103:599605.Google Scholar
Poff, N. L. 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthic Society 15:391409.Google Scholar
Polly, P. D. 2008. Adaptive zones and the pinniped ankle: A 3D quantitative analysis of carnivoran tarsal evolution, p. 165194 In Sargis, E. and Dagosto, M. (eds.). Mammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay. Springer, Dordrecht, The Netherlands.Google Scholar
Polly, P. D. 2010. Tiptoeing through the trophics: geographic variation in carnivoran locomotor ecomorphology in relation to environment, p. 347410 In Goswami, A. and Friscia, A. (eds.). Carnivoran Evolution: New Views on Phylogeny, Form, and Function. Cambridge University Press, Cambridge, UK.Google Scholar
Polly, P. D., and Eronen, J. T. 2011. Mammal associations in the Pleistocene of Britain: implications of ecological niche modelling and a method for reconstructing palaeoclimate, p. 279304 In Ashton, N., Lewis, S., and Stringer, C. (eds.) The Ancient Human Occupation of Britain. Elsevier, London, UK.Google Scholar
Polly, P. D., and Sarwar, S. 2014. Extinction, extirpation, and exotics: effects on the correlation between traits and environment at the continental level. Annales Zoologici Fennici, 51:209226.Google Scholar
Polly, P. D., Eronen, J. T., Fred, M., Dietl, G. P., Mosbrugger, V., Scheidegger, C., Frank, D. C., Damuth, J., Stenseth, N. C., and Fortelius, M. 2011. History matters: ecometrics and integrative climate change biology. Proceedings of the Royal Society of London, Series B, 278:11311140.Google ScholarPubMed
Polly, P. D., Lawing, A. M., Eronen, J. T., and Schnitzler, J. In press. Processes of ecometric patterning: modelling functional traits, environments, and clade dynamics in deep time. Biological Journal of the Linnean Society.Google Scholar
Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A., and Solomon, A. M. 1992. A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography, 19:117134.Google Scholar
Rafinesque, C. S. 1832. On the large wandering tygers or jaguars of the United States. Atlantic Journal, 1:1819.Google Scholar
Réale, D., McAdam, A. G., Boutin, S., and Berteaux, D. 2002. Genetic and plastic responses of a northern mammal to climate change. Proceedings of the Royal Society of London B, 270:591596.Google Scholar
Reed, K. E. 2013. Multiproxy palaeoecology: reconstructing evolutionary context in paleoanthropology. p. 204225 In Begum, D. R. (ed.), A Companion to Paleoanthropology. Wiley-Blackwell, Oxford, UK.Google Scholar
Retallack, G. J. 1997. Neogene expansion of the North American prairie. Palaios, 12:380390.Google Scholar
Ricklefs, R. E., and Travis, J. 1980. A morphological approach to the study of Avian community organization. Auk, 97:321338.Google Scholar
Ridgway, R. 1872. Notes on the vegetation of the lower Wabash Valley. American Naturalist, 6:724732.Google Scholar
Schmitz, O. J., Vlastimil, K., and Ovadia, O. 2004. Trophic cascades: the primacy of trait-mediated indirect interactions. Ecology Letters, 7:153163.Google Scholar
Shevenell, A. E., Kennett, J. P., and Lea, D. W. 2004. Middle Miocene southern ocean cooling and Antarctic cryosphere expansion. Science, 305:17661770.Google Scholar
Smith, M. R., and Polly, P. D. 2013. A reevaluation of the Harrodsburg Crevice Fauna (Late Pleistocene of Indiana, USA) and the climatic implication of its mammals. Journal of Vertebrate Paleontology, 33:410420.CrossRefGoogle Scholar
Soreghan, G. S., Heavens, N. G., Hinnov, L. A., Aciego, S. M., and Simpson, C. 2015. Reconstructing the dust cycle in deep time: the case of the Late Paleozoic Icehouse, p. 83120 In Polly, P. D., Head, J. J., and Fox, D. L. (eds.), Earth-Life Transitions: Paleobiology in the Context of Earth System Evolution. The Paleontological Society Papers 21. Yale Press, New Haven, CT.Google Scholar
Stayton, C. T. 2011. Biomechanics on the half shell: functional performance influences patterns of morphological variation in the emydid turtle carapace. Zoology, 114:213223.Google Scholar
Stebbins, G. L. 1981. Coevolution of grasses and herbivores. Annals of the Missouri Botanical Garden, 68:7586.Google Scholar
Stigall, A. L. 2011. Using ecological niche modelling to evaluate niche stability in deep time. Journal of Biogeography, 39:772781.Google Scholar
Strömberg, C. A. E. 2002. The origin and spread of grass-dominated ecosystems in the late Tertiary of North America: preliminary results concerning the evolution of hypsodonty. Palaeogeography, Palaeoclimatology, Palaeoecology, 177:5975.Google Scholar
Strömberg, C. A. E. 2004. Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the great plains of North America during the late Eocene to Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 207:239275.Google Scholar
Strömberg, C. A. E., and McInerney, F. A. 2011. The Neogene transition from C3 to C4 grasslands in North America: assemblage analysis of fossil phytoliths. Paleobiology, 37:5071.Google Scholar
Strömberg, C. A. E., Dunn, R. E., Madden, R. H., Kohn, M. J., and Carlini, A.A. 2013. Decoupling the spread of grasslands from the evolution of grazer-type herbivores in South America. Nature Communications, 4:1478.CrossRefGoogle ScholarPubMed
Svenning, J.-C., Fløjgaard, C., Marske, K. A., Nógues-Bravo, D., and Normand, S. 2011. Applications of species distribution modeling to paleobiology. Quaternary Science Reviews, 30:29302947.Google Scholar
Swinehart, J. B., Souders, V. L., Degraw, H. M., and Diffendal, R. F. Jr. 1985. Cenozoic paleogeography of western Nebraska, p. 209229 In Flores, R. M. and Kaplan, S. S. (eds.). Cenozoic Paleogeography of West-Central United States. Rocky Mountain Section, SEPM, Denver, Colorado.Google Scholar
Taulman, J. F., and Robbins, L. W. 2014. Range expansion and distributional limits of the nine-banded armadillo in the United States: an update of Taulman & Robbins (1996). Journal of Biogeography, 41:16261630.Google Scholar
Tedford, R. H., Albright, L. B. III, Barnosky, A. D., Ferrusquia-Villafranca, I., Hunt, R. M. Jr., Storer, J. E., Swisher, C. R. III, Voorhies, M. R., Webb, S. D., and Whistler, D. P. 2004. Mammalian biochronology of the Arikareean through Hemphillian interval (late Oligocene through early Pliocene epochs), p. 169231 In Woodburne, M. O. (ed.), Late Cretaceous and Cenozoic Mammals of North America: Biostratigraphy and Geochronology. Columbia University Press, New York.Google Scholar
Tihen, J. A., and Chantell, C. J. 1963. Urodele remains from the Valentine Formation of Nebraska. Copeia, 3:505510.Google Scholar
Tipple, B. J., Meyers, S. R., and Pagani, M. 2010. Carbon isotope ratio of Cenozoic CO2: a comparative evaluation of available geochemical proxies. Paleoceanography, 25:PA3202.Google Scholar
Ullrich, H. 1956. Fossile Sumpfschildkröten (Emys orbicularis L.) aus dem Diluvialtravertin von Weimar-Ehringsdorf-Taubach und Tonna (Thür.). Geologie, 5:360385.Google Scholar
Van Valen, L. 1960. A functional index of hypsodonty. Evolution, 14:531532.Google Scholar
Van Valkenburgh, B. 1987. Skeletal indicators of locomotor behavior in living and extinct carnivores. Journal of Vertebrate Paleontology, 7:162182.Google Scholar
Vermeij, G. J. 1987. Evolution and Escalation: an Ecological History of Life. Princeton University Press, Princeton, New Jersey.CrossRefGoogle Scholar
Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J., and Kattge, J. 2014. The emergence and promise of functional biogeography. Proceedings of the National Academy of Sciences USA, 38:1369013696.Google Scholar
Voorhies, M. R. 1971. Significance of crocodilian remains from the Ogallala Group (upper Tertiary) in Northeastern Nebraska. Journal of Paleontology, 45:119121.Google Scholar
Walton, L. R., Cluff, H. D., Paquet, P. C., and Ramsey, M. A. 2001. Movement patterns of barren-ground wolves in the central Canadian arctic. Journal of Mammalogy, 82:867876.Google Scholar
Wang, X. 1993. Transformation from plantigrady to digitigrady: functional morphology of locomotion in Hesperocyon (Canidae, Carnivora). American Museum Novitates, 3069:123.Google Scholar
Webb, C.O., Ackerly, D. D., McPeek, M. A., and Donoghue, M. J. 2002. Phytogenies and community ecology. Annual Review of Ecology and Systematics, 33:475505.Google Scholar
Webb, C. T., Hoeting, J. A., Ames, G. M., Pyne, M. I., and Poff, N. L. 2010. A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecology Letters, 13:267283.Google Scholar
Webb, T. III, and Bartlein, P. J. 1992. Global changes during the last three million years: climatic controls and biotic responses. Annual Review of Ecology and Systematics 23:141173.Google Scholar
Werner, E. E., and Peacor, S. D. 2003. A review of trait-mediated indirect interactions in ecological communities. Ecology, 84:10831100.Google Scholar
Westoby, M., Leishman, M. R., and Lord, J. M. 1995. On misinterpreting the ‘phylogenetic correlation’. Journal of Ecology, 83:531534.Google Scholar
Whitaker, J. O. Jr., and Mumford, R. E. 2008. Mammals of Indiana. Indiana University Press, Bloomington, Indiana.Google Scholar
Wright, I. J., Reich, P. B., Cornelissen, H. C., Falster, D. S., Garier, E., Hikosaka, K., Lamont, B. B., Lee, W., Oleksyn, J., Osada, N., Poorter, H., Villar, R., Warton, D. I., and Westoby, M. 2005. Assessing the generality of global leaf trait relationships. New Phytologist, 166:485496.Google Scholar
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., and Billups, K.K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science, 292:686693.Google Scholar
Zachos, J. C., Dickens, G. R., and Zeebe, R. E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451:279283.Google Scholar
Zhu, H., and Baker, R. G. 1995. Vegetation and climate of the last glacial-interglacial cycle in Southern Illinois, USA. Journal of Paleolimnology, 14:337354.CrossRefGoogle Scholar