Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T11:02:55.220Z Has data issue: false hasContentIssue false

Calyx plate homologies and early evolutionary history of the Crinoidea

Published online by Cambridge University Press:  21 July 2017

William I. Ausich*
Affiliation:
Department of Geological Sciences, 155 South Oval Mall, The Ohio State University Columbus, Ohio 43210, USA
Get access

Abstract

New, competing ideas on crinoid plate circlet homologies and the desire for a phylogenetically-based classification have led to a reexamination of the Crinoidea. The most primitive crinoids had four plate circlets, from bottom to top: lintels, infrabasals, basals, and radials. Dicyclic camerates, cladids, flexibles, and dicyclic articulates are composed of infrabasals, basals, and radials. Monocyclic camerates and monocyclic articulates are composed of basals and radials. These all follow traditional ideas on homologies. In contrast, disparids with “compound radials” are composed of lintels, infrabasals, and radials, rather than “basals,” “inferradials,” and “superradials;” and disparids without “compound radials” have lintels and infrabasals rather than “basals” and “radials.”

Parsimony-based phylogenetic interpretation of Ordovician crinoids with rhombiferans as the outgroup shows that crinoids are divisible into six clades, two paraphyletic and four monophyletic, including four-circlet crinoids, cladids, disparids, camerates, flexibles, and articulates.

Type
Research Article
Copyright
Copyright © 1997 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arendt, Y. A. 1976. Ordovikskie iglokozhie Gemistreptokrinoidei. Moskovskoe Obshchestvo Ispytatelel Prirody. Byulletin Otdel Geologischeskir, 51:6384.Google Scholar
Arendt, Y. A., and Rozhnov, S. V. 1995. Concerning hemistreptocrinoids. Paleontological Journal, 29:161166.Google Scholar
Ausich, W. I. 1986. Early Silurian rhodocrinitacean crinoids (Brassfield Formation, Ohio). Journal of Paleontology, 60:84106.CrossRefGoogle Scholar
Ausich, W. I. 1988. Evolutionary convergence and parallelism in crinoid calyx designs. Journal of Paleontology, 62:906916.Google Scholar
Ausich, W. I. 1996a. Crinoid plate circlet homologies. Journal of Paleontology, 70:955964.Google Scholar
Ausich, W. I. 1996b. Origin of the class Crinoidea. Ninth International Echinoderm Conference. Abstracts.Google Scholar
Ausich, W. I. 1996c. Phylogeny and classification of Ordovician Crinoidea (Echinodermata). Geological Society of America Abstracts with Programs, 28:292.Google Scholar
Ausich, W. I. In press a. Origin of the Crinoidea. Proceedings of the San Francisco International Echinoderm Conference.Google Scholar
Ausich, W. I. In press b. Early phylogeny and subclass division of the Crinoidea (Phylum Echinodermata). Journal of Paleontology.Google Scholar
Ausich, W. I., and Babcock, L. E. 1996. Phylogenetic affinities of Echmatocrinus brachiatus (Middle Cambrian, Canada), p. 16. In Repetski, J. E. (ed.), Sixth North American Paleontological Convention Abstracts of Papers. Paleontological Society Special Publication, 8.Google Scholar
Ausich, W. I., and Babcock, L. E. In press. The phylogenetic position of Echmatocrinus brachiatus. Palaeontology.Google Scholar
Ausich, W. I., Kammer, T. W., and Baumiller, T. K. 1994. Demise of the middle Paleozoic crinoid fauna: a single extinction event or rapid faunal turnover? Paleobiology, 20:345361.Google Scholar
Bather, F. A. 1899. A phylogenetic classification of the Pelmatozoa. British Association for the Advancement of Science Report (1898):916923.Google Scholar
Bather, F. A. 1900. The Crinoidea, p. 94204. In Lankester, E. R. (ed.), A Treatise on Zoology. Adam and Charles Black, London.Google Scholar
Breimer, A. 1978. General morphology Recent crinoids, p. T11T58. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Part T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Brett, C. E., Frest, T. J., Sprinkle, J., and Clement, C. R. 1983. Coronoidea: a new class of blastozoan echinoderms based on taxonomic reevaluation of Stephanocrinus. Journal of Paleontology, 57:627651.Google Scholar
Broadhead, T. W. 1984. Orders of camerate crinoids and Mastoids: grades or clades?. Geological Society of America Abstracts with Program, 16:455.Google Scholar
Brower, J. C. 1975. Silurian crinoids from the Pentland Hills, Scotland. Palaeontology, 18:631656.Google Scholar
Conway Morris, S. 1993. The fossil record and the early evolution of the Metazoa. Nature, 361:219225.CrossRefGoogle Scholar
Donovan, S. K. 1988. The early evolution of the Crinoidea, p. 236244. In, Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Oxford University Press.Google Scholar
Foote, M. 1994. Morphological disparity in Ordovician–Devonian crinoids and the early saturation of morphological space. Paleobiology, 20:320344.Google Scholar
Haugh, B. N. 1979. Late Ordovician channel-dwelling crinoid from southern Ontario, Canada. American Museum Novitates, 2655:125.Google Scholar
Jobson, L., and Paul, C. R. C. 1979. Compagicrinus fenestratus; a new Lower Ordovician inadunate crinoid from North Greenland. Rapport Grönlands Geologiske Undersøgelse, 91:7181.Google Scholar
Kelly, S. M. 1982. Origin of the crinoid orders Disparida and Cladida: possible inadunate cup plate homologies. Third North American Paleontological Convention, Proceedings, 1:285290.Google Scholar
Kelly, S. M. 1986. Classification and evolution of class Crinoidea. Abstracts of the Fourth North American Paleontological Convention, p. A23.Google Scholar
Kelly, S. M., Frest, T. J., and Strimple, H. L. 1978. Additional information on Simplococrinus persculptus. Journal of Paleontology, 52:12271232.Google Scholar
Kolata, D. R. 1982. Camerates, p. 170205. In Sprinkle, J. (ed.), Echinoderm faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Contributions Monograph, 1.Google Scholar
Lane, N. G. 1978. Inadunates, p. T263T266. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Lane, N. G., and Sevastopulo, G. D. 1982a. Microcrinoids from the Middle Pennsylvanian of Indiana. Journal of Paleontology, 56:103115.Google Scholar
Lane, N. G., and Sevastopulo, G. D. 1982b. Growth and systematic revision of Kallimorphocrinus astrus, a Pennsylvanian microcrinoid. Journal of Paleontology, 56:224259.Google Scholar
Lane, N. G., and Sevastopulo, G. D. 1985. Redescription of Allagecrinus americanus Rowley, 1895, a Late Devonian microcrinoid. Journal of Paleontology, 59:438445.Google Scholar
Lane, N. G., and Sevastopulo, G. D. 1986. Micromorph crinoid fauna of the McCraney Limestone (Mississippian, Kinderhookian) of western Illinois. Journal of Paleontology, 60:736743.Google Scholar
Lane, N. G., Sevastopulo, G. D., and Strimple, H. L. 1985. Amphipsalidocrinus: a monocyclic camerate microcrinoid. Journal of Paleontology, 59:7984.Google Scholar
Moore, R. C. 1954. Status of Invertebrate Paleontology, 1953. IV. Echinodermata: Pelmatozoa. Bulletin of the Museum of Comparative Zoology, 112: 125149.Google Scholar
Moore, R. C. 1962. Ray structures of some inadunate crinoids. University of Kansas Paleontological Contributions, Echinodermata, Article, 5, 47 p.Google Scholar
Moore, R. C., and Laudon, L. R. 1943. Evolution and classification of Paleozoic crinoids. Geological Society of America Special Paper 46, 167 p.Google Scholar
Moore, R. C., and Teichert, C., eds. 1978. Treatise on Invertebrate Paleontology, Part T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence, Kansas, 1027 p.Google Scholar
Moore, R. C., Strimple, H. L., and Lane, N. G. 1973. Classification of flexible and inadunate crinoids, p. 1531. In Moore, R. C. and Strimple, H. L., Lower Pennsylvanian (Morrowan) crinoids from Arkansas, Oklahoma, and Texas. University of Kansas Paleontological Contributions Article, 60 (Echinodermata 12).Google Scholar
Philip, G. M., and Strimple, H. L. 1971. An interpretation of the crinoid Aethocrinus moorei Ubaghs. Journal of Paleontology, 45:491493.Google Scholar
Rozhnov, S. V. 1988. Morfologiya i sistematichskoye polozheniye nizhneordovikskikh morskikh liliy. Paleontologicheskii Zhurnal, 2:6779.Google Scholar
Rozhnov, S. V. 1989. The morphology and systematic position of Lower Ordovician sea lilies. Paleontological Journal, 2:6275. [English translation of Rozhnov, 1988.] Google Scholar
Sevastopulo, G. D., and Lane, N. G. 1981. Silurian microcrinoids from western Tennessee. Journal of Paleontology, 55:11711175 Google Scholar
Sevastopulo, G. D., and Lane, N. G. 1988. Ontogeny and phylogeny of disparid crinoids, p. 245253. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Oxford University Press, Oxford.Google Scholar
Simms, M. J. 1993. Reinterpretation of thecal plate homology and phylogeny in the class Crinoidea. Lethaia, 26:303312.Google Scholar
Simms, M. J. 1994. A new interpretation of crinoid thecal plate homology and phylogeny, p. 257263. In David, B., Guille, A., Feral, J.-P., and Roux, M. (eds.), Echinoderms Through Time. A. A. Balkema, Rotterdam.Google Scholar
Simms, M. J., Gale, A. S., Gilliland, P., Rose, E. P. F., and Sevastopulo, G. D. 1993. Echinodermata, p. 491528. In Benton, M. J. (ed.), The Fossil Record 2. Chapman Hall, New York.Google Scholar
Simms, M. J., and Sevastopulo, G. D. 1993. The origin of articulate crinoids. Palaeontology, 36:91109.Google Scholar
Smith, A. B. 1994. Systematics and the Fossil Record. Blackwell Scientific Publications, Oxford, 223 p.Google Scholar
Sprinkle, J., and Collins, D. 1995. Echmatocrinus revisited: still an echinoderm and probably the earliest crinoid. Geological Society of America Abstracts with Programs, 6:A113A114.Google Scholar
Swofford, D. L. 1993. PAUP: phylogenetic analysis using parsimony, version 3.1.1 computer program. [Distributed by the Illinois Natural History Survey, Champaign, Illinois].Google Scholar
Ubaghs, G. 1953. Classe des Crinoïdes, p. 658773. In Priveteau, J. (ed.), Traité de paléontologie, Volume 3. Masson et Cie, Paris.Google Scholar
Ubaghs, G. 1969. Aethocrinus moorei Ubaghs, n. gen., n. sp., le plus ancien crinoide dicyclique connu. University of Kansas Paleontological Contributions Paper, 38, 25 p.Google Scholar
Ubaghs, G. 1971. Un crinoïde énigmatique Ordovicien: Perittocrinus Jaekel. Neues Jahrbuch für Geologie, Paläontologie, Abhandlungen, 137:305336.Google Scholar
Wachsmuth, C., and Springer, F. 1897. North American Crinoidea Camerata. Museum of Comparative Zoology Memoir, 20, 21, 897 p.Google Scholar