Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T13:04:43.990Z Has data issue: false hasContentIssue false

In Vivo Magnetic Resonance Spectroscopy: Applications in Psychiatry

Published online by Cambridge University Press:  02 January 2018

Michael Maier*
Affiliation:
Institute of Neurology, Queen Square, London WC1N 3BG. Fax: 0171 278 5616

Abstract

Background

Nuclear magnetic resonance is a non-destructive and non-invasive technology that is highly suited for research in psychiatry. It is establishing itself as a versatile means of studying brain morphology, chemistry and function and is finding a place in the diagnosis of disease, monitoring of treatment and the study of basic brain processes.

Method

A literature review was undertaken.

Results

Magnetic resonance spectroscopy has been shown to distinguish between psychiatric disorders, and has provided evidence of their pathophysiological mechanisms.

Conclusions

Spectroscopy in particular opens a window, for the first time, on the study of in vivo brain chemistry.

Type
Review Article
Copyright
Copyright © 1995 The Royal College of Psychiatrists

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, D. L. (1992) Reversible reduction of NAA after acute central nervous system damage. Society of Magnetic Resonance in Medicine (Book of Abstracts), 1, 643.Google Scholar
Austin, S. J., Connelly, A., Gadian, D. C., et al (1991) Localized 1H NMR spectroscopy in Canavan's disease: a report of two cases. Magnetic Resonance in Medicine, 19, 439445.10.1002/mrm.1910190235Google Scholar
Bartels, M., Gunther, U., Albert, K., et al (1991) 19F nuclear magnetic resonance spectroscopy of neuroleptics: the first in vivo pharmacokinetics of trifluoperazine in the rat brain and the first in vivo spectrum of fluphenazine in the human brain. Biological Psychiatry, 30, 656662.10.1016/0006-3223(91)90011-AGoogle Scholar
Birken, D. L. & Oldendorf, W. H. (1989) N-acetyl-L-aspartic acid: a literature review of a compound prominent in 1H NMR spectroscopic studies of brain. Neuroscience and Biobehavioural Reviews, 13, 2331.10.1016/S0149-7634(89)80048-XGoogle Scholar
Breiter, S. N., Arroyo, S., Mathews, V. P., et al (1994) Proton MR spectroscopy in patients with seizure disorders. American Journal of Neuroradiology, 15, 373384.Google Scholar
Brown, G. G., Levine, S. R., Gorell, J. M., et al (1989) in vivo 31P NMR profiles of Alzheimer's disease and multiple subcortical infarct dementia. Neurology, 39, 14231427.10.1212/WNL.39.11.1423Google Scholar
Brown, T. R., Kincaid, B. M. & Ugurbil, K. (1982) NMR chemical shift imaging in three dimensions. Proceedings of the National Academy of Science, USA, 79, 35233526.10.1073/pnas.79.11.3523Google Scholar
Bruhn, H., Frahm, J., Gyngell, M. L., et al (1989) Cerebral metabolism in man after acute stroke: new observations using localized proton NMR spectroscopy. Magnetic Resonance in Medicine, 9, 126131.10.1002/mrm.1910090115Google Scholar
Bruhn, H., Weber, T., Thorwirth, V., et al (1991) In vivo monitoring of neuronal loss in Creutzfeldt–Jakob disease by proton magnetic resonance spectroscopy. Lancet, 337, 16101611.10.1016/0140-6736(91)93309-WGoogle Scholar
Calabrese, G., de Icken, R. F., Fein, G., et al (1992) 31Phosphorus magnetic resonance spectroscopy of the temporal lobes in schizophrenia. Biological Psychiatry, 32, 2632.10.1016/0006-3223(92)90139-QGoogle Scholar
Christiansen, P., Toft, P., Larsson, H. B. W., et al (1993) The concentration of N acetyl aspartate, creatine + phosphocreatine, and choline in different parts of the brain in adulthood and senium. Magnetic Resonance Imaging, 11, 799806.10.1016/0730-725X(93)90197-LGoogle Scholar
Dager, S. R., Marro, K. I., Richards, T. L., et al (1994) Preliminary application of magnetic resonance spectroscopy to investigate lactate-induced panic. American Journal of Psychiatry, 151, 5763.Google Scholar
Davie, C. A., Hawkins, C. P., Barker, G. J., et al (1994a) Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain, 117, 4959.10.1093/brain/117.1.49Google Scholar
Davie, C. A., Barker, G. J., Quinn, N., et al (1994b) Proton MRS in Huntington's disease. Lancet, 343, 1580.10.1016/S0140-6736(94)92987-4Google Scholar
Fisher, M., Sotak, C. H., Minematsu, K., et al (1992) New magnetic resonance techniques for evaluating cerebrovascular disease. Annals of Neurology, 32, 115122.10.1002/ana.410320202Google Scholar
Gill, S. S., Thomas, D. G. T., Van Bruggen, N., et al (1990) Proton MR spectroscopy of intracranial tumours: in vivo and in vitro studies. Journal of Computer Assisted Tomography, 14, 497504.10.1097/00004728-199007000-00001Google Scholar
Graham, S. H., Meyerhoff, D. J., Bayne, L., et al (1994) Magnetic resonance spectroscopy of N-acetylaspartate in hypoxicischaemic encephalopathy. Annals of Neurology, 35, 490494.10.1002/ana.410350420Google Scholar
Hanstock, C. C., Rothman, D. L., Prichard, J. W., et al (1988) Spatially localized 1H NMR spectra of metabolites in the human brain. Proceedings of the National Academy of Science, USA, 85, 18211825.10.1073/pnas.85.6.1821Google Scholar
Kato, T., Takahashi, S. & Inubushi, T. (1991) Brain lithium concentration by 7Li and 1H magnetic resonance spectroscopy in bipolar disorder. Psychiatry Research: Neuroimaging, 45, 5363.10.1016/0925-4927(92)90013-TGoogle Scholar
Kato, T., Takahashi, S.Shiori, T., et al (1992) Brain phosphorous metabolism in depressive disorders detected by phosphorous 31 magnetic resonance spectroscopy. Journal of Affective Disorder, 26, 223230.10.1016/0165-0327(92)90099-RGoogle Scholar
Keshavan, M. S., Kapur, S. & Pettegrew, J. W. (1991a) Magnetic resonance spectroscopy in psychiatry: potential, pitfalls and promise. American Journal of Psychiatry, 148, 976985.Google Scholar
Keshavan, M. S., Pettegrew, J. W. & Panchalingam, K. S. (1991b) Phosphorus 31 magnetic resonance spectroscopy detects altered brain metabolism before onset of schizophrenia. Archives of General Psychiatry, 48, 1112.Google Scholar
Keshavan, M. S., Sanders, R. D., Pettegrew, J. W., et al (1993) Frontal lobe metabolism and cerebral morphology in schizophrenia: 31P MRS and MRI studies. Schizophrenia Research, 10, 241246.10.1016/0920-9964(93)90058-QGoogle Scholar
Komoroski, R. A., Newton, J. E. O., Karson, C., et al (1990) Detection of psychoactive drugs in vivo in humans using 19F NMR spectroscopy. Biological Psychiatry, 29, 711714.10.1016/0006-3223(91)90146-DGoogle Scholar
Maier, M., Ron, M. A., Barker, G. J., et al (1995) Proton magnetic resonance spectroscopy: an in vivo method of detecting hippocampal neuronal loss in schizophrenia. Psychological Medicine, in press.10.1017/S0033291700033171Google Scholar
Meyeroff, D. J., Mackay, S., Poole, N., et al (1994) N acetylaspartate reductions measured by 1H MRS in cognitively impaired HIV-seropositive individuals. Magnetic Resonance Imaging, 12, 653659.10.1016/0730-725X(94)92460-0Google Scholar
Michaelis, T., Merboldt, K. D., Bruhn, H., et al (1993) Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Neuroradiology, 187, 219227.Google Scholar
Miller, B. L. (1991) A review of chemical issues in 1H NMR spectroscopy: N-acetyl-L-aspartate, creatine and choline. NMR in Biochemistry, 4, 4752.Google Scholar
Miller, B. L.Moats, R. A., Shonk, T., et al (1993) Alzheimer disease: depiction of increased cerebral myo-inositol with proton MR spectroscopy. Radiology, 187, 433437.10.1148/radiology.187.2.8475286Google Scholar
Miller, D. H., Austin, S. J., Connelly, A., et al (1991) Proton magnetic resonance spectroscopy of an acute and chronic lesion in multiple sclerosis. Lancet, 337, 5859.10.1016/0140-6736(91)93383-KGoogle Scholar
Minshew, N. J., Goldstein, G., Dombrowski, S. M., et al (1993) A preliminary 31P MRS study of autism: evidence for undersynthesis and increased degradation of brain membranes. Biological Psychiatry, 33, 762773.10.1016/0006-3223(93)90017-8Google Scholar
Murata, T., Koshino, Y., Omori, M., et al (1993) In vivo proton magnetic resonance spectroscopy study in premature aging in adult Down's syndrome. Biological Psychiatry, 34, 290297.10.1016/0006-3223(93)90086-SGoogle Scholar
Murphy, D. G. M., Bottomley, P. A., Salerno, J. A., et al (1993) An in vivo study of phosphorus and glucose metabolism in Alzheimer's disease using magnetic resonance spectroscopy and PET. Archives of General Psychiatry, 50, 341349.10.1001/archpsyc.1993.01820170019003Google Scholar
Nasrallah, H. A., Skinner, T. E., Schmalbrook, P., et al (1994) Proton magnetic resonance spectroscopy (1H MRS) of the hippocampal formation in schizophrenia: a pilot study. British Journal of Psychiatry, 165, 481485.10.1192/bjp.165.4.481Google Scholar
Petroff, O. A. C., Prichard, J. W., Behar, K. L., et al (1985) Cerebral intracellular pH by 31P nuclear resonance spectroscopy. Neurology, 35, 781788.10.1212/WNL.35.6.781Google Scholar
Pettegrew, J. W., Withers, G., Panchalingam, K., et al (1988a) Considerations for brain pH assessment by 31P NMR. Magnetic Resonance Imaging, 6, 135142.10.1016/0730-725X(88)90443-2Google Scholar
Pettegrew, J. W., Moossy, J., Withers, G., et al (1988b) 31P nuclear magnetic resonance study of the brain in Alzheimer's disease. Journal of Neuropathology and Experimental Neurology, 47, 235248.10.1097/00005072-198805000-00004Google Scholar
Pettegrew, J. W., Panchalingam, K., Moossy, J., et al (1988c) Correlation of 31P magnetic resonance spectroscopy and morphological findings in Alzheimer's disease. Archives of Neurology, 45, 10931096.10.1001/archneur.1988.00520340047010Google Scholar
Pettegrew, J. W., Keshavan, M. S., Panchalingam, K., et al (1991) Alterations in brain high energy phosphate and membrane phospholipid metabolism in first episode, drug naive schizophrenics: a pilot study of dorsal prefrontal cortex by in vivo phosphorus 31 nuclear magnetic resonance spectroscopy. Archives of General Psychiatry, 48, 563568.10.1001/archpsyc.1991.01810300075011Google Scholar
Rothman, D. L., Houseman, A. M., Graham, G. D., et al (1991) Localized proton NMR observation of [3-13C] lactate in stroke after [1-13C] glucose infusion. Magnetic Resonance in Medicine, 21, 302307.10.1002/mrm.1910210215Google Scholar
Rothman, D. L., Novotny, E. J., Shulman, G. I., et al (1992) 1H-[13C] NMR measurements of [4-13C] glutamate turnover in human brain. Proceedings of the National Academy of Science, USA, 89, 96039606.10.1073/pnas.89.20.9603Google Scholar
Shulman, R. G., Blamire, A. M., Rothman, D. L., et al (1993) Nuclear magnetic resonance imaging and spectroscopy of human brain function. Proceedings of the National Academy of Science, USA, 90, 31273133.10.1073/pnas.90.8.3127Google Scholar
Toft, P. B., Christiansen, P., Pryds, O., et al (1994) T1, T2, and concentrations of brain metabolites in neonates and adolescents estimated with H-1 MR spectroscopy. Journal of Magnetic Resonance Imaging, 4, 15.10.1002/jmri.1880040102Google Scholar
Vion-Dury, J., Meyerhoff, D. J., Cozzone, P. J., et al (1994) What might be the impact of neurology of the analysis of brain metabolism by in vivo magnetic resonance spectroscopy? Journal of Neurology, 241, 354371.10.1007/BF02033352Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.