Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T23:20:42.992Z Has data issue: false hasContentIssue false

Some Experiments in the Chemistry of Normal Sleep

Published online by Cambridge University Press:  29 January 2018

Ian Oswald
Affiliation:
University of Western Australia, Nedlands, Western Australia
G. W. Ashcroft
Affiliation:
Medical Research Council Unit for the Study of Brain Metabolism, Department of Pharmacology, University of Edinburgh
R. J. Berger
Affiliation:
Brain Research Institute, University of California, Los Angeles, California
D. Eccleston
Affiliation:
Medical Research Council Unit for the Study of Brain Metabolism, Department of Pharmacology, University of Edinburgh
J. I. Evans
Affiliation:
Department of Psychiatry, University of Edinburgh
V. R. Thacore
Affiliation:
Mapperly Hospital, Nottingham

Extract

Sleep is essential for physical and mental health. In the last 15 years there has grown up the concept of the brain stem reticular activating system. Electroencephalographic studies have shown two qualitatively different and alternating kinds of sleep, the orthodox (“slow wave”, or “forebrain“) and the paradoxical (”hind-brain“, “rapid eye movement”, “activated“, or “dreaming”) phases (Akert et al., 1965). It may be predicted that in the next decade attention will turn increasingly to the chemical basis of sleep. If a man is deprived of sleep for 100 hours, it is extremely difficult to keep him awake and one may suppose that an abnormal biochemical state exists within his central nervous system.

Type
Research Article
Copyright
Copyright © Royal College of Psychiatrists, 1966 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnew, H. W., Webb, W. B., and Williams, R. L. (1964). “The effects of stage four sleep deprivation” Electroenceph. clin. Neurophysiol., 17, 6870.CrossRefGoogle Scholar
Akert, K., Bally, G., and Schadé, J. P. (eds.) (1965). Sleep Mechanisms. Amsterdam: Elsevier.Google Scholar
Amin, A. H., Crawford, T. B. B., and Gaddum, J. (1954). “Distribution of substance P and 5-hydroxytryptamine in central nervous system of dog” J. Physiol., 126, 596618.CrossRefGoogle Scholar
Ashcroft, G. W., Eccleston, D., and Crawford, T. B. B. (1965). “5-Hydroxyindole metabolism in rat brain (Methods).” J. Neurochem., 12, 483492.CrossRefGoogle Scholar
Bogdanski, D. F., Weissbach, H., and Udenfriend, S. (1957). “The distribution of serotonin, 5-hydroxytryptophan decarboxylase and monoamine oxidase in brain” Ibid., 1, 272–8.Google Scholar
Coppen, A. J., Shaw, D. M., and Farrell, J. P. (1963). “Potentiation of the antidepressive effect of a monoamine oxidase inhibitor by trytophan” Lancet, i, 7981.CrossRefGoogle Scholar
Costa, E., and Rinaldi, F. (1958). “Biochemical and electroencephalographic changes in the brain of rabbits injected with 5-hydroxytryptophan (influence of chlorpromazine premedication)” Amer. J. Physiol., 194, 214–20.CrossRefGoogle Scholar
Dement, W. (1960). “The effect of dream deprivation” Science, 131, 1705–7.Google Scholar
Dement, W. and Kleitman, N. (1957). “Cyclic variations in EEG during sleep and their relation to eye movements, body motility and dreaming” Electroenceph. clin. Neurophysiol., 9, 673–90.Google Scholar
Doepfner, W. (1962). “Biochemical observations on LSD-25 and Deseril” Experientia (Basel), 18, 256–61.CrossRefGoogle Scholar
Doepfner, W. and Cerletti, A. (1958). “A comparison of lysergic acid derivatives and anti-histamines as inhibitors of the edema provoked in the rat's paw by serotonin” Int. Arch. Allergy, 12, 8997.CrossRefGoogle Scholar
Eccleston, D., Ashcroft, G. W., and Crawford, T. B. B. (1965). “5-Hydroxyindole metabolism in rat brain (application and drug studies)” J. Neurochem., 12, 493503 CrossRefGoogle Scholar
Evans, J. I., and Oswald, I. (1966). “Some experiments in the chemistry of narcoleptic sleep” Brit. J. Psychiat., 112, 401–4.CrossRefGoogle Scholar
Faure, J. (1965). “Le sommeil ‘paradoxal’ du lapin dans ses aspects anatomo-fonctionels et hormonaux.” In: Neurophysiologie des États de Sommeil (ed. Jouvet, M.). Paris: Centre National de la Recherche Scientifique.Google Scholar
Faure, J. and Bensch, C. (1962). “Mésencephale et ‘post-réaction-E.E.G.’ dans le comportement lié à la vie endocrino-génitale du lapin” Rev. neurol., 106, 197201.Google Scholar
Fisher, C., Gross, J., and Zuch, J. (1965). “Cycle of penile erection synchronous with dreaming (REM) sleep” Arch. gen. Psychiat. (Chicago), 12, 2945.CrossRefGoogle Scholar
Gresham, S. C., Webb, W. B., and Williams, R. L. (1963). “Alcohol and caffeine: effect on inferred visual dreaming” Science, 140, 1226–7.Google Scholar
Guroff, G., and Udenfriend, S. (1962). “Studies in aromatic amino-acid uptake by rat brain in vivo” J. biol. Chem., 237, 803–6.CrossRefGoogle Scholar
Hess, S. M., and Doepfner, W. (1961). “Behavioural effects and brain amine content in rats” Arch. int. Pharmacodyn., 134, 8999.Google Scholar
Hess, S. M., and Udenfriend, S. (1959). “A fluorometric procedure for the measurement of tryptamine in tissues” J. Pharmacol. exp. Therap., 127, 175–7.Google Scholar
Himwich, W. A., and Costa, E. (1960). “Behavioural changes associated with changes in concentration of brain serotonin” Fed. Proc., 19, 838–45.Google Scholar
Jouvet, D., Vimont, P., Delorme, F., and Jouvet, M. (1964). “Étude de la privation sélective de la phase paradoxale du sommeil chez le chat” C.R. Soc. Biol. (Paris), 158, 756–9.Google Scholar
Jouvet, M. (1962). “Recherches sur les structures et les mécanismes responsables des phases du sommeil physiologique” Arch. ital. Biol., 100, 125206.Google Scholar
Jouvet, M., Cier, A., Mounier, D., and Valatx, J. L. (1961). “Effet du 4-butyrolactone et du 4-hydroxybutyrate de sodium sur l'EEG et le comportement du chat” C.R. Soc. Biol. (Paris), 155, 1313–6.Google Scholar
Kales, A., Hoedemaker, F. S., Jacobson, A., and Lichtenstein, E. L. (1964). “Dream deprivation: an experimental reappraisal” Nature, 204, 1337–8.Google Scholar
Karfa, J., Karki, N. T., and Tala, E. (1961). “Inhibition by methysergide of 5-hydroxytryptophan toxicity to mice” Acta Pharm. Toxicol., 18, 255–62.Google Scholar
Le Gassicke, J., Ashcroft, G. W., Eccleston, D., Evans, J. I., Oswald, I., and Ritson, E. B. (1965). “The clinical state, sleep and amine metabolism of a tranylcypromine addict” Brit. J. Psychiat., 111, 357–64.Google Scholar
Oswald, I. (1963). “Two kinds of sleep” Discovery, 24, no. 11, 3639.Google Scholar
Oswald, I., Berger, R. J., Evans, J. I., and Thacore, V. R. (1964). “Effect of L-tryptophan upon human sleep” Electroenceph. Clin. Neurophysiol., 16, 603.Google Scholar
Oswald, I., Berger, R. J. Jaramillo, R. A., Keddie, K. M. G., Olley, P. C., and Plunkett, G. B. (1963). “Melancholia and barbiturates: a controlled EEG, body and eye movement study of sleep” Brit. J. Psychiat., 109, 6678.Google Scholar
Oswald, I., and Thacore, V. R. (1963). “Amphetamine and phenmetrazine addiction” Brit. med. J., ii, 427–31.CrossRefGoogle Scholar
Pollin, W., Cardon, P. V., and Kety, S. S. (1961). “Effects of amino acid feeding in schizophrenic patients treated with iproniazid” Science, 133, 104–5.Google Scholar
Price, S. A. P., and West, G. P. (1960). “Distribution of tryptophan in the brain” Nature, 185, 470–1.Google Scholar
Rechtschaffen, A., and Maron, L. (1964). “The effect of amphetamine on the sleep cycle” Electroenceph. clin. Neurophysiol., 16, 438–45.Google Scholar
Rechtschaffen, A., and Verdone, P. (1964). “Amount of dreaming: effect of incentive, adaptation to laboratory, and individual differences” Percept. Mot. Skills, 19, 947–58.Google Scholar
Smith, B., and Prockop, D. J. (1962). “Central-nervous-system effects of ingestion of L-tryptophan by normal subjects” New Eng. J. Med., 267, 1338–41.Google Scholar
Sourkes, T. L. (1965). “Action of alpha-methyldopa on the brain” Brit. med. Bull., 21, 6669.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.