Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T22:43:05.419Z Has data issue: false hasContentIssue false

The Effect of Mild Hyperventilation on Red Cell Sodium

Published online by Cambridge University Press:  29 January 2018

J. Damas Mora
Affiliation:
University of Sheffield; Attached Worker of the MRC Unit for Metabolic Studies in Psychiatry, Sheffield S6 1TP
M. K. Patel
Affiliation:
University of Illinois Medical Center
F. A. Jenner
Affiliation:
University of Sheffield; Medical Research Council Unit for Metabolic Studies in Psychiatry, Sheffield S6 1TP

Summary

Control subjects voluntarily overbreathed to produce end-tidal PCO2 levels similar to those found in patients suffering from neurotic or endogenous non-retarded depression. Red cell sodium content was found to decrease during overbreathing in all the subjects. The changes were similar to those usually reported for depressed patients.

The results imply that red cell sodium levels are in part dependent on respiratory behaviour. They suggest a need for considerable caution in interpreting red cell sodium values from psychiatric patients.

Type
Research Article
Copyright
Copyright © Royal College of Psychiatrists, 1977 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ames, F. (1955) The hyperventilation syndrome. J. Ment. Sci., 101, 466525.CrossRefGoogle ScholarPubMed
Buss, C. I. (1970) Statistics in Biology. London: McGraw-Hill Book Company.Google Scholar
Christophers, B. (1961) The hyperventilation syndrome. Med. J. Aust., 2, 81–6.Google Scholar
Coppen, A. J., Shaw, D. M. & Mangoni, A. (1962) Total exchangeable sodium in depressive illness. Brit. med. J., ii, 295–8.Google Scholar
Coppen, A. & Shaw, D. M. (1963) Mineral metabolism in melancholia. Brit. med. J., ii, 1439–44.Google Scholar
Damas Mora, J., Grant, L., Kenyon, P., Patel, M. K. & Jenner, F. A. (1976) Respiratory ventilation and carbon dioxide levels in syndromes of depression. Brit. J. Psych., 129, 457–64.Google Scholar
Elkinton, J. R., Singer, R. B., Barker, E. S. & Clark, J. K. (1955) Effects in man of acute experimental respiratory alkalosis and acidosis on ionic transfer in the total body fluids. J. clin. Invest., 34, 1671–90.Google Scholar
Fenn, W. O. & Asano, R. (1956) Effects of carbon dioxide inhalation on potassium liberation from the liver. Amer. J. Physiol., 185, 567–77.CrossRefGoogle ScholarPubMed
Frazer, M., Secunda, S. K. & Mbndels, J. (1972) A method for the determination of sodium, potassium, magnesium and lithium concentrations in erythrocytes. Clin. chim. Acta, 36, 499509.Google Scholar
Gibbons, J. L. (1960) Total body sodium and potassium in depressive illness. Clin. Sci., 19, 133–8.Google ScholarPubMed
Kilburn, K. H. (1966) Movements of potassium during acute respiratory acidosis and recovery. J. appl. Physiol., 21, 679–84.Google Scholar
Ladé, R. I. & Brown, E. B. Jr (1963) Movement of potassium between muscle and blood in response to respiratory acidosis. Amer. J. Physiol., 204, 761–7.Google Scholar
Lewis, B. I. (1953) The hyperventilation syndrome. Ann. int. Med., 38, 918–27.Google Scholar
Lewis, B. I. (1954) Chronic hyperventilation syndrome. J. Amer. med. Assoc., 155, 1204–8.CrossRefGoogle ScholarPubMed
Mendels, J., Frazer, A. & Secunda, S. K. (1971) Intraerythrocyte sodium and potassium in manic-depressive illness. Biol. Psychiat., 5, 165–71.Google Scholar
Mendels, J., Frazer, A., Secunda, S. K. & Stokes, J. W. (1974) A study of electrolyte and biogenic amine metabolism in manic-depressive illness. Int. Pharmacopsychiat., 9, 206–17.Google Scholar
Naylor, G. J. (1970) Cellular sodium and potassium metabolism and the symptoms in depressive illness. M.D. Thesis.Google Scholar
Naylor, G. J., McNamee, H. B. & Moody, J. P. (1971) Changes in erythrocyte sodium and potassium on recovery from a depressive illness. Brit. J. Psychiat., 118, 219–23.CrossRefGoogle ScholarPubMed
Okel, B. B. & Hurst, J. W. (1961) Prolonged hyperventilation in man. Arch. Int. Med., 108, 757–62.Google Scholar
Rapoport, S., Stevens, C. D., Engel, G. L., Ferris, E. B. & Logan, M. (1946) Effect of voluntary overbreathing in the electrolyte equilibrium of arterial blood in man. J. biol. Chem., 163, 411–27.Google Scholar
Russell, G. F. M. (1960) Body weight and balance of water, sodium and potassium in depressed patients given electroconvulsive therapy. Clin. Sci., 19, 327–36.Google Scholar
Schottstaedt, W. W., Grace, W. J. & Wolff, H. G. (1956) Life situations, behaviour, attitudes, emotions and renal excretion of fluid and electrolytes. J. psychosom. Res., 1, 287–91.Google ScholarPubMed
Schou, M. (1974) The biochemical mode of action of lithium: experimental studies in animals and man. J. Pharmacologie, 5, Suppl 1, 7980.Google Scholar
Scribner, B. H., Fremont-Smith, K. & Burnell, J. M. (1955) The effect of acute respiratory acidosis on the internal equilibrium of potassium. J. clin. Invest., 34, 1276–85.CrossRefGoogle ScholarPubMed
Yu, P. N., Yim, B. J. B. & Stanfield, C. A. (1959) Hyperventilation syndrome. Arch. int. Med., 103, 902–13.CrossRefGoogle ScholarPubMed
Submit a response

eLetters

No eLetters have been published for this article.