Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T04:16:48.129Z Has data issue: false hasContentIssue false

X-rays from Radio Pulsars: The Portable Supernova Remnants

Published online by Cambridge University Press:  04 August 2017

David J. Helfand*
Affiliation:
Columbia Astrophysics Laboratory, Columbia University

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Neutron stars are the longest-lived remnants of supernova explosions. As a reservoir of thermal energy remaining from the explosion and generated by frictional coupling between core and crust, as a storehouse of magnetic and rotational kinetic energy which allows the star to act as a high energy particle accelerator, and as the source of a deep gravitational potential which can generate heat from infalling matter, neutron stars remain capable of producing high energy radiation for a Hubble time. We review here the results of an extensive survey of supernova remnants and radio pulsars with the imaging instruments on board the Einstein Observatory and discuss the implications of these results for pulsar physics and for the origin and evolution of galactic neutron stars.

Type
V. Compact Objects Associated With Supernova Remnants, Pulsars and Neutron Stars
Copyright
Copyright © Reidel 1983 

References

Alpar, A., Anderson, P. W., Pines, D., and Shaham, J. 1981, Astrophys. J. (Letters), 249, p. L29.Google Scholar
Alpar, A., Anderson, P. W., Pines, D., and Shaham, J. 1983, Astrophys. J., submitted.Google Scholar
Alpar, A., and Ho, C. 1983, Mon. Not. R. Astron. Soc., in press.Google Scholar
Anderson, P. W., and Itoh, N. 1975, Nature, 256, p. 25.Google Scholar
Arons, J. 1981, Astrophys. J., 248, p. 1099.Google Scholar
Bahcall, J.N., and Wolf, R.A. 1965, Astrophys. J., 142, p. 1254.CrossRefGoogle Scholar
Baym, G., and Pines, D. 1971, Ann. Phys., 66, 816.Google Scholar
Becker, R.H., Helfand, D.J., and Szymkowiak, A.E. 1982, Astrophys. J., 255, p. 557.Google Scholar
Blandford, R.D., Applegate, J.H., and Hernquist, L. 1982, preprint.Google Scholar
Blandford, R.D., Ostriker, J.P., Pacini, F., and Rees, M.J. 1973 Astron. Astrophys., 23, p. 145.Google Scholar
Brinkman, , 1980, Astron. Astrophys., 82, p. 352.Google Scholar
Chanan, G.A., Margon, B., and Downes, R.A. 1981, Astrophys. J. (Letters), 243, p. L5.Google Scholar
Cheng, A.F., and Helfand, D.J. 1983, Astrophys. J., in press.Google Scholar
Cheng, A.F., and Ruderman, M.A. 1981, Astrophys. J., 235, p. 576.Google Scholar
Fritz, G., Henry, R.C., Meekins, J.F., Chubb, T.A., and Friedman, H. 1969, Science, 164, p. 709.Google Scholar
Giacconi, R. et al. 1979, Astrophys. J., 230, p. 540.Google Scholar
Glen, G., and Sutherland, P. 1988, Astrophys. J., 239, p. 671.Google Scholar
Greenstein, G., and Hartke, G.J. 1983, Astrophys. J., submitted.Google Scholar
Harding, D., Geyer, R.A., and Greenstein, G. 1978, Astrophys. J., 222, p. 991.Google Scholar
Harnden, F.R., and Gorenstein, P. 1973, Nature, 241, p. 107.Google Scholar
Harnden, F.R., and Seward, F.D. 1982, Astrophys. J. (Letters), 256, p. L45.Google Scholar
Helfand, D.J. 1983, in preparation.Google Scholar
Helfand, D.J., and Becker, R.H. 1982, Nature, submitted.Google Scholar
Helfand, D.J., Chanan, G. A., and Novick, R. 1980, Nature, 283, p. 337.Google Scholar
Hewish, A., Bell, S.J., Pilkington, J.D.M., Scott, P. F., and Collins, R.A. 1968, Nature, 217, p. 709.CrossRefGoogle Scholar
Manchester, R.N., Tuohy, I.R., and D. 'Amico, N. 1982, Astrophys. J. (Letters), 262, p. L31.Google Scholar
Moore, W.E., Agrawal, P. C., and Garmire, G. 1974, Astrophys. J. (Letters), 189, p. L117.Google Scholar
Nomoto, K., and Tsuruta, S. 1981, Astrophys. J. (Letters), 250, p. L19.Google Scholar
Pacini, F. 1971, Astrophys. J. (Letters), 163, p. L17.Google Scholar
Pines, D., Shaham, J., and Ruderman, M.A. 1972, Nature, Phys. Sci. 237, p. 83.Google Scholar
Radhakrishnan, V., and Srinivasan, G. 1980, J. Astron. Astrophys. 1, p. 25.Google Scholar
Richardson, M.B. 1980, Ph.D. dissertation, SUNY, Rochester.Google Scholar
Ruderman, M.A. 1969, Nature, 223, p. 447.Google Scholar
Shklowskii, I.S. 1970, Astrophys. J. (Letters), 159, p. L77.Google Scholar
Smith, F.G. 1981, Pulsars, ed. Sieber, W. and Wielebinski, R., IAU symposium 95, (Reidel) p. 221.Google Scholar
Toor, A., and Seward, F.D. 1977, Astrophys. J., 216, p. 560.CrossRefGoogle Scholar
Tsuruta, S. 1979, Physics Reports, 56, p. 237.Google Scholar
Tuohy, I.R., and Garmire, G. 1980, Astrophys. J. (Letters), 239, p. L107.CrossRefGoogle Scholar
Tuohy, I.R., Garmire, G.P., Manchester, R.N., and Dopita, M.A. 1982, preprint.Google Scholar
van Riper, K.A., and Lamb, D.Q. 1981, Astrophys. J., 244, p. L13.Google Scholar
Wallace, P. T. et al. 1977, Nature, 266, p. 692.Google Scholar
Wheeler, J.C. 1982, in Supernovae: A Survey of Current Research, ed. Reese, M.J. and Stoneham, R.J. (Dordrecht: Reidel), p. 167.Google Scholar
Wilson, A. S. 1980, Astrophys. J. (Letters), 241, p. 19.Google Scholar
Wolff, R.S., Kestenbaum, H. L., Ku, W. H.-M., and Novick, R. 1975, Astrophys. J. (Letters), 202, p. L77.Google Scholar