Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-12T09:37:08.352Z Has data issue: false hasContentIssue false

Turbulent Convection and Subtleties of Differential Rotation Within the Sun

Published online by Cambridge University Press:  13 May 2016

J. Toomre
Affiliation:
JILA, University of Colorado, Boulder, CO 80309-0440, USA
A. S. Brun
Affiliation:
JILA, University of Colorado, Boulder, CO 80309-0440, USA
M. DeRosa
Affiliation:
JILA, University of Colorado, Boulder, CO 80309-0440, USA
J. R. Elliott
Affiliation:
Dept. Meteorology, University of Reading, Reading RG6 6BB, UK
M. S. Miesch
Affiliation:
DAMPT, University of Cambridge, Cambridge CB3 9EW, UK

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The solar convection zone exhibits a differential rotation with radius and latitude that poses major theoretical challenges. Helioseismology has revealed that a smoothly varying pattern of decreasing angular velocity Ω with latitude long evident at the surface largely prints through much of the convection zone, encountering a region of strong shear called the tachocline at its base, below which the radiative interior is nearly in uniform solid body rotation. Helioseismic observations with MDI on SOHO and with GONG have also led to the detection of significant variations in Ω with 1.3 yr period in the vicinity of the tachocline. There is another shearing layer just below the solar surface, and that region exhibits propagating bands of zonal flow. Such rich dynamical behavior requires theoretical explanations, some of which are beginning to emerge from detailed 3-D simulations of turbulent convection in rotating spherical shells. We discuss some of the properties exhibited by such numerical models. Although these simulations are highly simplified representations of much of the complex physics occurring within the convection zone, they are providing a very promising path for understanding the solar differential rotation and its temporal variations.

Type
Session II: Convection Zone and Local Area Helioseismology
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Brummell, N.H., Cattaneo, F., & Toomre, J. 1995, Science, 269, 1370.Google Scholar
Brummell, N.H., Clune, T.L., & Toomre, J. 2001, ApJ, submitted.Google Scholar
Brummell, N.H., Hurlburt, N.E., & Toomre, J. 1998, ApJ, 493, 955.Google Scholar
Brun, A.S. & Toomre, J. 2001a, ApJ, submitted.Google Scholar
Brun, A.S. & Toomre, J. 2001b, in ESA SP-464, in press.Google Scholar
Charbonneau, P., Dikpati, M., & Gilman, P.A. 1999, ApJ, 526, 513.CrossRefGoogle Scholar
Charbonneau, P. & MacGregor, K.B. 1997, ApJ, 486, 502.Google Scholar
Clune, T.L. et al. 1999, Parallel Comp., 25 (4), 361.Google Scholar
DeRosa, M. & Toomre, J. 2001, in ESA SP-464, in press.Google Scholar
Elliott, J.R. & Gough, D.O. 1999, ApJ, 516, 475.Google Scholar
Elliott, J.R., Miesch, M.S., & Toomre, J. 2000, 533, 546.Google Scholar
Gilman, P.A. 2000, Solar Phys., 192, 27.Google Scholar
Gilman, P.A. & Foukal, P.V. 1979, ApJ, 229, 1179.Google Scholar
Gilman, P.A. & Miller, J. 1981, ApJS, 229, 1179.Google Scholar
Glatzmaier, G.A. 1987, in The Internal Solar Angular Velocity, Reidel, 263.CrossRefGoogle Scholar
Gough, D.O. & McIntyre, M.E. 1998, Nature, 394, 755.Google Scholar
Gough, D.O. & Toomre, J. 1991, ARA&A, 29, 627.Google Scholar
Haber, D.A. et al. 2000, Solar Phys., 192, 335.Google Scholar
Haber, D.A. et al. 2001a, these proceedings.Google Scholar
Haber, D.A. et al. 2001b, in ESA SP-464, in press.Google Scholar
Harvey, J.W. et al. 1996, Science, 272, 1284.CrossRefGoogle Scholar
Howe, R. et al. 2000a, Science, 287, 2456.Google Scholar
Howe, R. et al. 2000b, ApJ, 533, L163.Google Scholar
Howe, R. et al. 2001, these proceedings.Google Scholar
Kosovichev, A.G. 1996, ApJ, 469, L61.Google Scholar
Libbrecht, K.G. 1989, ApJ, 336, 1092.Google Scholar
Mestel, L. & Weiss, N.O. 1987, MNRAS, 226, 123.Google Scholar
Miesch, M.S. et al., 2000, ApJ, 532, 593.Google Scholar
Parker, E.N. 1993, ApJ, 408, 707.Google Scholar
Scherrer, P.H. et al. 1995, Solar Phys., 162, 129.Google Scholar
Schou, J. et al. 1998, ApJ, 505, 390.Google Scholar
Schou, J. 1999, ApJ, 523, L181.Google Scholar
Spiegel, E.A. & Zahn, J.-P. 1992, A&A, 265, 106.Google Scholar
Thompson, M.J. et al. 1996, Science, 272, 1300.CrossRefGoogle Scholar
Tobias, S.M., Brummell, N.H., Clune, T.L., & Toomre, J. 1998, ApJ, 502, L177.CrossRefGoogle Scholar
Tomczyk, S., Schou, J., & Thompson, M.J. 1995, ApJ, 448, L57.Google Scholar
Toomre, J. et al. 2000, Solar Phys. 192, 437.Google Scholar