Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T04:35:33.620Z Has data issue: false hasContentIssue false

Solar activity and solar oscillations

Published online by Cambridge University Press:  25 May 2016

Y. Elsworth*
Affiliation:
University of Birmingham Edgbaston, Birmingham B15 2TT, U.K.

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Helioseismology provides us with the tools to probe solar activity. So that we can consider how the solar oscillations are influenced by that activity, we first consider the phenomena that we associate with the active Sun. The surface of the Sun is not quiet but shows evidence of convection on a wide range of scales from a few hundred kilometres through to several tens-of-thousands of kilometres. The surface temperature shows signs of the convection structures with the temperature in the bright granules being some 100 K to 200 K hotter than the surrounding dark lanes. Sunspots, which are regions of high magnetic field that suppress convective flows, are clearly visible to even quite crude observations. They are several tens-of-thousands of kilometres in diameter and about 2000 K cooler than their surroundings. Ultraviolet and X-ray pictures from satellites show that the higher layers of the solar atmosphere are very non-uniform with bright regions of high activity. Contemporaneous magnetograms show that these regions are associated with sunspots. Flares - regions of magnetic reconnections - are seen at all wavelengths from X-ray through the visible to radio. They are the non-thermal component of the radio emission of the Sun. There are many other indicators of activity on the Sun.

Type
Part IV: Inputs from helioseismology to solar physics
Copyright
Copyright © Kluwer 1997 

References

Anguera Gubau, M., Pallé, P. L., Perez Hernandez, F., Regulo, C. & Roca Cortes, T. (1992) A&A, 255, 363.Google Scholar
Bachmann, K. T. & Brown, T. M. (1993) ApJ, 411, L45.Google Scholar
Basu, S. et al. (1997) these proceedings.Google Scholar
Baudin, F., Gabriel, A., Gibert, D., PaUe, P. & Regulo, C. (1995) in Fourth SOHO Workshop: Helioseismology, eds. Hoeksema, J. T., Domingo, V., Fleck, B. & Battrick, B., ESA SP-376, vol 2, p 323.Google Scholar
Braun, D. C. (1987) ApJ 319, L27.Google Scholar
Braun, D. C. (1988) ApJ 335, 1015.Google Scholar
Campbell, W. R., and Roberts, B. (1989) ApJ 338, 538.Google Scholar
Chaplin, W. J., Elsworth, Y., Howe, R., Isaak, G. R., McLeod, C. P., Miller, B. A. & New, R. (1995) in Fourth SOHO Workshop: Helioseismology, eds. Hoeksema, J. T., Domingo, V., Fleck, B. & Batrick, B., ESA SP-376 vol 2, p 335.Google Scholar
Chaplin, W. J., Elsworth, Y., Howe, R., Isaak, G. R., McLeod, C. P., Miller, B. A. & New, R. (1996) MNRAS, submitted.Google Scholar
Chaplin, W. J., Elsworth, Y., Isaak, G. R., McLeod, C. P., Miller, B. A, New, R. & Underhill, C. J (1997) these proceedings.Google Scholar
Chaplin, et al. (1996), in preparation.Google Scholar
Duvall, T. et al. (1988) ApJ 324, 1158.CrossRefGoogle Scholar
Duvall, T. L. Jr., Jefferies, S. M. & Harvey, J.W. (1995) Bull. Am. Ast. Soc. 25, 950.Google Scholar
Duvall, T. L. Jr., D'Silva, S., Jefferies, S. M., Harvey, J.W. & Schou, J. (1996) Nature 379, 235.Google Scholar
Dziembowski, W. A. & Goode, P. R. (1996) A&A 317, 919.Google Scholar
Elsworth, Y., Howe, R., Isaak, G. R., McLeod, C. P. & New, R. (1990) Nature 345, 322.Google Scholar
Elsworth, Y., Howe, R., Isaak, G. R., McLeod, C. P., Miller, B. A., New, R., Wheeler, S. J. (1993) MNRAS 265, 888.Google Scholar
Elsworth, Y., Howe, R., Isaak, G. R., McLeod, C. P., Miller, B. A., Wheeler, S. J., New, R. (1995) in GONG '94, Helio- and Astero-Seismology from Space, eds. Ulrich, R., Rhodes, E., & Däppen, W., p. 318.Google Scholar
Fossat, E. (1996), private communication.Google Scholar
Foukal, P. & Lean, J. (1990) Science 247, 556.Google Scholar
Gelly, B., Fossat, E., & Grec, G. (1988) in Seismology of the Sun and sun-like stars, eds. ESA SP-286, p. 275.Google Scholar
Goldreich, P., et al. (1991) ApJ 370, 752.Google Scholar
Gough, D. O. & Thompson, M. J. (1988) in Advances in Helio- & Asteroseismology, Symp. IAU 123, eds. Christensen-Dalsgaard, J. & Frandsen, S., 175.Google Scholar
Haber, D. A., Toomre, J., Hill, F., & Gough, D. O. (1988) in Proc. Symp. Seismology of the Sun and sun-like stars, Ed. Rolfe, E. J., ESA SP-286, p. 301.Google Scholar
Isaak, G. R. (1978) Physics Bulletin 27, 127.Google Scholar
Kosovichev, A. G. & Zharkova, V. V. (1995) Fourth SOHO Workshop: Helioseismology, eds. Hoeksema, J. T., Domingo, V., Fleck, B. & Battrick, B., ESA SP-376, p. 341.Google Scholar
Kuhn, J. R. (1989) ApJ 339, L45.CrossRefGoogle Scholar
Leighton, R. B., Noyes, R. W., & Simon, G. W. (1962) ApJ 135, 474.Google Scholar
Libbrecht, K. G. & Woodard, M. F. (1990) Nature 345, 779.Google Scholar
Palle, P. L., Regulo, C. & Cortes, Roca (1989) A&A bf 169, 313.Google Scholar
Palle, P. L. et al. (1996) ApJ, submitted.Google Scholar
Rhodes, E. J., Cacciani, A. & Korzennik, S. C. (1991) Adv. Space. Res. 11 (4), 17.Google Scholar
Roberts, B (1996) Bull. Astr. Soc. India 24, 199.Google Scholar
Spruit, H. C. (1996) Bull. Astr. Soc. India 24, 211.Google Scholar
Toutain, Th., & Fröhlich, C. (1992) A&A 257, 287.Google Scholar
Wilson, R. C. & Hudson, H. S. (1988) Nature 319, 654.Google Scholar
Wolff, C. L. (1972) ApJ 177, L87.Google Scholar
Woodard, M. F., & Noyes, R. W. (1985) Nature 318, 449.CrossRefGoogle Scholar
Woodard, M. F., Libbrecht, K. G., Kuhn, J. R., & Murray, N. (1991) ApJ, 373, L81.Google Scholar