Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-07T17:06:28.250Z Has data issue: false hasContentIssue false

The Rotation of Low-Mass Pre-Main-Sequence Stars

Published online by Cambridge University Press:  26 May 2016

Robert D. Mathieu*
Affiliation:
University of Wisconsin, Department of Astronomy, Madison WI 53706 USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Major photometric monitoring campaigns of star-forming regions in the past decade have provided rich rotation period distributions of pre-main-sequence stars. The rotation periods span more than an order of magnitude in period, with most falling between 1 and 10 days. Thus the broad rotation period distributions found in 100 Myr clusters are already established by an age of 1 Myr. The most rapidly rotating stars are within a factor of 2-3 of their critical velocities; if angular momentum is conserved as they evolve to the ZAMS, these stars may come to exceed their critical velocities. Extensive efforts have been made to find connections between stellar rotation and the presence of protostellar disks; at best only a weak correlation has been found in the largest samples. Magnetic disk-locking is a theoretically attractive mechanism for angular momentum evolution of young stars, but the links between theoretical predictions and observational evidence remain ambiguous. Detailed observational and theoretical studies of the magnetospheric environments will provide better insight into the processes of pre-main-sequence stellar angular momentum evolution.

Type
Session 1 Observations of Rotating Stars
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Barnes, S. 2003, ApJ 586, 464 Google Scholar
Barnes, S., Sofia, S. & Pinsonneault, M. 2001, ApJ 548, 1071 Google Scholar
Bouvier, J., Cabrit, S., Fenandez, M., Martin, E.L., & Matthews, J.M. 1993, A&A 272, 176 Google Scholar
Choi, P.I. & Herbst, W. 1996, AJ 111, 283 Google Scholar
Clarke, C.J. & Bouvier, J. 2000, MNRAS 319, 457 Google Scholar
Cameron Collier, A. & Campbell, C.G. 1993, A&A 274, 309 Google Scholar
Edwards, S. et al. 1993, AJ 106, 372 Google Scholar
Greene, T.P. & Lada, C.J. 2002, AJ 124, 2185 Google Scholar
Hartmann, L. 2002, ApJ 566, L29 CrossRefGoogle Scholar
Hartmann, L., Hewett, R., Stahler, S., & Mathieu, R.D. 1986, ApJ 309, 275 Google Scholar
Herbst, W., Bailer-Jones, C.A.L., Mundt, R., Meisenheimer, K. & Wackermann, R. 2002, A&A 396, 513 Google Scholar
Herbst, W., Rhode, K.L., Hillenbrand, L.A. & Curan, G. 2000, AJ 119, 261 Google Scholar
Hillenbrand, L.A. 1997, AJ 113, 1733 Google Scholar
Johns-Krull, C. M., Valenti, J. A., Saar, S. H., & Hatzes, A. P. 2001, ASP Conf. Ser. 223: 11th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun, 11, 521 Google Scholar
Lada, C.J. et al. 2000, AJ 120, 3162 CrossRefGoogle Scholar
Najita, J., Carr, J.S. & Mathieu, R.D. 2003, ApJ 589, 931 Google Scholar
Rebull, L.M. 2001, AJ 121, 1676 Google Scholar
Rebull, L.M., Wolff, S.C., Strom, S.E. & Makidon, R.B. 2002, AJ 124, 546 CrossRefGoogle Scholar
Rhode, K.L., Herbst, W. & Mathieu, R.D. 2001, AJ 122, 3258 Google Scholar
Seiss, L., Dufour, E. & Forestini, M. 2000, A&A 358, 593 Google Scholar
Shu, F., Najita, J., Ostriker, E., Wilkin, F., Ruden, S. & Lizano, S. 1994, ApJ 429, 781 Google Scholar
Stassun, K.G., Mathieu, R.D., Mazeh, T., & Vrba, F.J. 1999, AJ 117, 2941 Google Scholar
Stassun, K.G., Mathieu, R.D., Vrba, F.J., Mazeh, T., & Henden, A. 2001, AJ 121, 1003 Google Scholar
Stassun, K.G., & Terndrup, D. 2003, PASP in press Google Scholar
Terndrup, D.M., Stauffer, J.R., Pinsonneault, M.H., Sills, A., Yuan, Y., Jones, B.F., Fischer, D. & Krishnamurthi, A. 2000, AJ 119, 1303 Google Scholar
Tinker, J., Pinsonneault, M. & Terndrup, D. 2002, ApJ 564, 877 Google Scholar
Vogel, S.N. & Kuhi, L.V. 1981, ApJ 245, 960 Google Scholar