Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T17:08:20.360Z Has data issue: false hasContentIssue false

Recent progress in understanding the hot and warm gas phases in the halos of star-forming galaxies

Published online by Cambridge University Press:  26 May 2016

David K. Strickland
Affiliation:
Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
Timothy M. Heckman
Affiliation:
Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
Edward J.M. Colbert
Affiliation:
Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
Charles G. Hoopes
Affiliation:
Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
Kimberley A. Weaver
Affiliation:
NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this contribution we present a few selected examples of how the latest generation of space-based instrumentation — NASA's Chandra X-ray Observatory and the Far-Ultraviolet Spectroscopic Explorer (FUSE) — are finally answering old questions about the influence of massive star feedback on the warm and hot phases of the ISM and IGM. In particular, we discuss the physical origin of the soft thermal X-ray emission in the halos of star-forming and starburst galaxies, its relationship to extra-planar Hα emission, and plasma diagnostics using FUSE observations of O vi absorption and emission.

Type
Part 4. Feedback from Massive Stars
Copyright
Copyright © Astronomical Society of the Pacific 2003 

References

Boroson, B., McCray, R., Oelfke Clark, C., Slavin, J., Mac Low, M.-M., Chu, Y.-H., van Buren, D. 1997, ApJ 478, 638.CrossRefGoogle Scholar
Dahlem, M, Weaver, K.A., Heckman, T.M. 1998, ApJS 118, 401.CrossRefGoogle Scholar
Dettmar, R.J. 1993, Rev. Modern Astron. 6, 33.Google Scholar
Dopita, M.A., Sutherland, R.S. 1996, ApJS 102, 161.Google Scholar
Heckman, T.M., Armus, L., Miley, G.K. 1990, ApJS 74, 833.Google Scholar
Heckman, T.M., Sembach, K.R., Meurer, G.R., Strickland, D.K., Martin, C.L., Calzetti, D., Leitherer, C. 2001, ApJ 554, 1021.Google Scholar
Heckman, T.M., Norman, C.A., Strickland, D.K., Sembach, K.R. 2002, ApJ (Letters) 577, 691.Google Scholar
Lehnert, M.D., Heckman, T.M. 1996, ApJ 462, 651.Google Scholar
Lehnert, M.D., Heckman, T.M., Weaver, K.A. 1999, ApJ 523, 575.CrossRefGoogle Scholar
Phillips, A.C., 1993, AJ 105, 486.Google Scholar
Pietsch, W., Roberts, T.P., Sako, M., et al. 2001, A&A (Letters) 365, L174.Google Scholar
Radovich, M., Kahanpää, J., Lemke, D. 2001, A&A 377, 73.Google Scholar
Rand, R.J. 1998, PASA 15, 106.Google Scholar
Read, A.M., Stevens, I.R. 2002, MNRAS (Letters) 335, L36.CrossRefGoogle Scholar
Schurch, N.J., Roberts, T.P., Warwick, R.S. 2002, MNRAS, 335, 241.Google Scholar
Strickland, D.K., Heckman, T.M., Weaver, K.A., Dahlem, M. 2000, AJ 120, 2965.Google Scholar
Strickland, D.K., Heckman, T.M., Weaver, K.A., Hoopes, C.G., Dahlem, M. 2002a, ApJ 568, 689.Google Scholar
Strickland, D.K., Heckman, T.M., Colbert, E.J.M., Hoopes, C.G., Weaver, K.A. 2002b, ApJ submitted.Google Scholar
Strickland, D.K., Heckman, T.M., Colbert, E.J.M., Hoopes, C.G., Weaver, K.A., 2002c, in preparation.Google Scholar
Strickland, D.K., Heckman, T.M., Colbert, E.J.M., Hoopes, C.G., Weaver, K.A., 2002d, in preparation.Google Scholar
Strickland, D.K., Stevens, I.R. 2000, MNRAS 314, 511.Google Scholar
Suchkov, A.A., Balsara, D.S., Heckman, T.M., Leitherer, C. 1994, ApJ 430, 511.Google Scholar
Suchkov, A.A., Berman, V.G., Heckman, T.M., Balsara, D.S. 1996, ApJ 463, 528.Google Scholar
Weaver, K.A., Heckman, T.M., Dahlem, M. 2000, ApJ 534, 684.CrossRefGoogle Scholar