Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-12T08:33:27.846Z Has data issue: false hasContentIssue false

Properties of Dark Matter Halos in Disk Galaxies

Published online by Cambridge University Press:  26 May 2016

Roelof S. de Jong
Affiliation:
STScI, 3700 San Martin Dr., Baltimore, MD 21218, U.S.A.
Susan Kassin
Affiliation:
Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210-1173, U.S.A.
Eric F. Bell
Affiliation:
MPIA, Königstuhl 17, D-69117 Heidelberg, Germany
Stéphane Courteau
Affiliation:
Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a simple technique to estimate mass-to-light (M/L) ratios of stellar populations based on two broadband photometry measurements, i.e. a colour-M/L relation. We apply the colour-M/L relation to galaxy rotation curves, using a large set of galaxies that span a great range in Hubble type, luminosity and scale size and that have accurately measured HI and/or Hα rotation curves. Using the colour-M/L relation, we construct stellar mass models of the galaxies and derive the dark matter contribution to the rotation curves.

We compare our dark matter rotation curves with adiabatically contracted Navarro, Frenk, & White (1997, NFW hereafter) dark matter halos. We find that before adiabatic contraction most high surface brightness galaxies and some low surface brightness galaxies are well fit by a NFW dark matter profile. However, after adiabatic contraction, most galaxies are poorly fit in the central few kpc. the observed angular momentum distribution in the baryonic component is poorly matched by ACDM model predictions, indicating that the angular momentum distribution is not conserved during the galaxy assembly process. We find that in most galaxies the dark matter distribution can be derived by scaling up the HI gas contribution. However, we find no consistent value for the scaling factor among all the galaxies.

Type
Part 9: Disks
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Bell, E. F., & de Jong, R. S. 2001, ApJ, 550, 212.Google Scholar
Bell, E. F., McIntosh, D., Katz, N., & Weinberg, M. D. 2003, astro-ph/0302543.Google Scholar
Blumenthal, G. R., Faber, S.M., Flores, R., & Primack, J.R. 1986, ApJ, 301, 27.Google Scholar
Bosma, A. 1981, AJ, 86, 1971.Google Scholar
Bullock, J. S., Kolatt, T. S., Sigad, Y., Somerville, R. S., Kravtsov, A. V., Klypin, A. A., Primack, J. R., & Dekel, A. 2001, MNRAS, 321, 559.Google Scholar
Cole, S., Lacey, C. G., Baugh, C. M., & Frenk, C. S. 2000, MNRAS, 319, 168.CrossRefGoogle Scholar
Courteau, S. & Rix, H. 1999, ApJ, 513, 561.CrossRefGoogle Scholar
de Jong, R. S. & Lacey, C. 2000, ApJ, 545, 781.Google Scholar
Dutton, A., Courteau, S., Carignan, C., & de Jong, R.S. 2003, astro-ph/0310001.Google Scholar
Freeman, K. C., 1970, ApJ, 160, 811.Google Scholar
Hoekstra, H., van Albada, T. S., & Sancisi, R. 2001, MNRAS, 323, 453.Google Scholar
Navarro, J. F. & Steinmetz, M. 2000, ApJ, 538, 477.Google Scholar
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493.Google Scholar
Peebles, P. J. E. 1969, ApJ, 155, 393.CrossRefGoogle Scholar
Rubin, V. C., Thonnard, N., & Ford, W. K. 1978, ApJ, 225, L107.CrossRefGoogle Scholar
van Albada, T.S., Bahcall, J.N., Begeman, K., & Sancisi, R. 1985, ApJ, 295, 30.Google Scholar
van den Bosch, F. C. & Swaters, R. A. 2001, MNRAS, 325, 1017.CrossRefGoogle Scholar
Verheijen, M. A. W. 1997, PhD thesis, Univ. of Groningen.Google Scholar
Vitvitska, M., et al. 2002, ApJ, 581, 799.Google Scholar