Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-13T12:00:04.324Z Has data issue: false hasContentIssue false

Physical mechanisms of mixing in stellar interiors

Published online by Cambridge University Press:  04 August 2017

Evry Schatzman*
Affiliation:
Observatoire de Nice, B.P. 139 Nice-Cedex 06003 France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The different mechanisms by which mixing can take place in stellar interiors are considered : the classical Rayleigh-Benard instability with penetrative convection and over-shooting, semi-convection, gravitationnal and radiative settling, turbulent mixing. The latter mechanism is thoroughly described, from the driving force of turbulent mixing to its influence on stellar structure, stellar evolution and the analysis of the corresponding observationnal data.

Turbulent mixing has to be considered each time the building up of a concentration gradient takes place, either by gravitationnal or radiative settling or by nuclear reactions. Turbulent mixing, as a first approximation, can be described by an isotropic diffusion coefficient. The process is then governed by a diffusion equation. The behaviour of the solution of the diffusion equation needs some explanation in order to be well understood.

A number of examples concerning surface abundances of chemical elements are given (3He, 7Li, Be, 12C, 13C, 14N), as well as a discussion of the solar neutrinos problem.

The building up of a µ-barrier, which stops the turbulence allows stellar evolution towards the giant branch and explains nitrogen abundance at the surface of giants of the first ascending branch.

Turbulent mixing is also of some importance for the transfer of angular momentum and has to be taken into account for explaining the abundance of the elements in Wolf-Rayet stars.

Type
III. BINARITY, PULSATION, ROTATION AND MIXING
Copyright
Copyright © Reidel 1984 

References

Abt, H.A. 1961, Ap.J. Suppl. 6, 37.CrossRefGoogle Scholar
Abt, H.A. 1967, Magnetic and related stars, Cameron, Ed., Monobook Corporation, Baltimore, p.173.Google Scholar
Baglin, A. 197Z, Astr. Astrophys. 19, 45.Google Scholar
Baglin, A., Breger, M., Chevalier, C., Hauck, B., Lecontel, J.M., Sareyan, J.P., Caltier, C., 1973, Astr. Astrophys., 23, 221.Google Scholar
Baglin, A., Morel, P., This symposium Google Scholar
Bahcall, J.N., Bahcall, N., Ulrich, R.K., 1968, Astrophys. L. 2.91 Google Scholar
Bahcall, J.N., Heubner, W.F., Lubow, S.H., Magee, N.H. Jr, Merts, A.L., Parker, P.D., Roeshyai, B., Ulrich, R.K., Argo, M.F., 1980, Phys. Rev Lett., 45, 945.CrossRefGoogle Scholar
Bahcall, J.N., Heubner, W.F., Lubow, S.H., Parker, P.D., Ulrich, R.K., 1982, Rev. Mod. Phys., 54, 767.CrossRefGoogle Scholar
Bienaylé, O., Maeder, A., Schatzman, E., 1983, Astr. Astrophys., to be published, preprint.Google Scholar
Biermann, L., 1937, Astr. Nachr. 263, 185.CrossRefGoogle Scholar
Boesgard, A., 1976, P.A.S.P., 88, 353.CrossRefGoogle Scholar
Breger, M., 1979, P.A.S.P., 91, 5.CrossRefGoogle Scholar
Cayrel, R., Cayrel de Strobel, G., Campbell, B., Däppen, W., 1983, preprint.Google Scholar
Chapman, S., Aller, L.H., 1960, Astrophys. J., 132, 461.Google Scholar
Dearborne, D.S.P., Eggleton, P.P., Schramm, D.N., 1976, Astrophys. J. 203, 455.CrossRefGoogle Scholar
Duncan, D.K., 1981 Astrophys. J., 248, 651.CrossRefGoogle Scholar
Ezer, D., Cameron, A.G.W., 1968, Astrophys. L., 1, 177.Google Scholar
Faulkner, D., 1966, Astrophys. J., 144, 978.CrossRefGoogle Scholar
Geiss, J., Buhler, F., Cerutti, H., Eberhardt, P., Filleux, C.H., 1972, Apollo 16 Prel. Sci. Rep. NASA (SP 315).Google Scholar
Genova, F., Schatzman, E., 1979, Astr. Astrophys. 78, 323.Google Scholar
Herbig, G., 1965, Astrophys. J., 141, 188.Google Scholar
Hopfinger, E.G., Browand, F.K., Gagne, Y., 1982, J. Fluid Mech., 125, 505.CrossRefGoogle Scholar
Iben, J., 1977, Lectures at Saas Fe, Société Suisse d'Astronomie.Google Scholar
Knobloch, E., Spruit, H.C., 1982, Astr. Astrophys., 113, 261 Google Scholar
Knobloch, E., Spruit, H.C., 1983, preprint.Google Scholar
Lambert, D.L., Dominy, J.F., Sivertson, S., 1980, Astrophys. J., 235, 114.CrossRefGoogle Scholar
Latour, J., Massaguer, J.M., Toomre, J., Zahn, J.P., 1983, preprint.Google Scholar
Laurent, C., 1983, ESO workshop on primordial Helium, Shaver, P. A., Kunth, D., Kjär, K. Ed. ESO Observatory, p.335.Google Scholar
Maeder, A., 1975, Astr. Astrophys. 40, 303.Google Scholar
Maeder, A., 1982, Astr. Astrophys., 105, 149.Google Scholar
Mazzitelli, I., 1983, Private communication to R. Cayrel. Merrill, 1952, Astrophys. J. 116 Google Scholar
Michaud, G., Charland, Y., Vauclair, S., Vauclair, G., 1976, Astrophys. J. 210, 447.CrossRefGoogle Scholar
Roxburgh, I.W., 1978, Astr. Astrophys., 65, 281.Google Scholar
Scalo, M.S., Miller, G.E., Astrophys. J., 239, 953.CrossRefGoogle Scholar
Schatzman, E., 1945, Ann. d'Ap., 8, 143.Google Scholar
Schatzman, E., 1969, Astr. Astrophys. 3, 331.Google Scholar
Schatzman, E., 1977, Astr. Astrophys., 56, 211 Google Scholar
Schatzman, E., 1983, to be published.Google Scholar
Schatzman, E., Maeder, A., Astr. Astrophys., 96, 1.Google Scholar
Shaviv, G., Beaudet, G., 1968, Astrophys. L., 2, 17.Google Scholar
Shaviv, G., Salpeter, E.E., 1968, Phys. Rev. Lett., 21, 1602.CrossRefGoogle Scholar
Shaviv, G., Salpeter, E.E., 1973, Astrophys. J., 184, 191.CrossRefGoogle Scholar
Skumanich, A., 1972, Astrophys. J., 171, 565.CrossRefGoogle Scholar
Spite, F., Spite, M., 1982, Astr. Astrophys., 115, 357.Google Scholar
Sweigart, A.V., Gross, P.G., 1978, Astrophys. J. Supplt., 36, 405.CrossRefGoogle Scholar
Sweigart, A.V., Mengel, J.G., 1979; Astrophys. J., 229, 624.CrossRefGoogle Scholar
Toomre, J., Zahn, J.P., Latour, J., Spiegel, E.A., 1976, Astrophys. J. 207, 545.CrossRefGoogle Scholar
Vauclair, G., Vauclair, S., Pamjatnick, A., 1974, Astr. Astrophys. 31, 63.Google Scholar
Zahn, J.P., 1977, Astr. Astrophys. 57, 383.Google Scholar
Zahn, J.P., 1983, Cours à Saas Fe, Société Suisse d'Astronomie Ed.Google Scholar