Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T00:16:31.171Z Has data issue: false hasContentIssue false

Numerical Hydrodynamics: SPH versus AMR

Published online by Cambridge University Press:  13 May 2016

Tomek Plewa*
Affiliation:
Nicolaus Copernicus Astronomical Center, Bartycka 18, 00–716 Warsaw, Poland

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The advantages and disadvantages of two approaches to astrophysical hydrodynamics, Smoothed Particle Hydrodynamics (SPH) and Adaptive Mesh Refinement (AMR), are briefly discussed together with some current problems of computational hydrodynamics.

Type
XIV. Frontiers of Observations
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Berger, M. J., & Colella, P. 1989, J. Comput. Phys., 82, 64.Google Scholar
Bodenheimer, P. 1968, ApJ, 153, 483.Google Scholar
Bodenheimer, P., & Sweigart, A. 1968, ApJ, 152, 515.Google Scholar
Brandt, A. 1984, Multigrid Techniques: 1984 Guide, with Applications to Fluid Dynamics, GMD-Studien Nr. 85, Sankt Augustin, GMD.Google Scholar
Godunov, S. K. 1959, Mat. Sb., 47, 217.Google Scholar
Harten, A. 1983, J. Comput. Phys., 49, 357.Google Scholar
Henyey, L. G., Forbes, J. E., & Gould, N. L. 1964, ApJ, 139, 306.Google Scholar
Klein, R. I., McKee, C. F., & Colella, P. 1994, ApJ, 420, 213.Google Scholar
Larson, R. B. 1969, MNRAS, 145, 271.Google Scholar
Lucy, L. B. 1977, AJ, 82, 1013.Google Scholar
Monaghan, J. J. 1992, ARA&A, 30, 543.Google Scholar
van Leer, B. 1977, J. Comput. Phys., 23, 276.Google Scholar
Woodward, P. R. 1976, ApJ, 207, 484.Google Scholar
Woodward, P. R., Colella, P. 1984, J. Comput. Phys., 54, 115.Google Scholar