No CrossRef data available.
Published online by Cambridge University Press: 25 May 2016
Millisecond time-scales are natural for some neutron star and black hole processes, although possibly difficult to observe. The Rossi X-Ray Timing Explorer (RXTE) has found that for the neutron stars in low-mass X-ray binaries (LMXB) there are flux oscillations at high frequencies, with large amplitudes. Z sources and bursters tend to exhibit oscillations in the range 300-1200 Hz. Persistent emission may exhibit one or both of two features. In bursts from different bursters, a nearly coherent pulsation is seen, which may be the rotation period of the neutron star. For some the frequency equals the difference between the two higher frequencies, suggesting a beat frequency model, but in others it is twice the difference. The sources span two orders of magnitude in accretion rate, yet the properties are similar. The similar maximum frequencies suggests that it corresponds to the Kepler orbit frequency at the minimum stable orbit or the neutron star surface, either of which would determine the neutron star masses, radii and equation of state. Theories of accretion onto black holes predict a quasi-periodic oscillation (QPO) related to the inner accretion disk. The two microquasar black hole candidates (BHCs) have exhibited candidates for this or related frequencies.