Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T03:53:01.280Z Has data issue: false hasContentIssue false

A Method for Determining the Chemical Composition Parameters (X, Y, Z) of Galactic Clusters

Published online by Cambridge University Press:  14 August 2015

Wayne Osborn
Affiliation:
Instituto Venezolano de Astronomía, Mérida, Venezuela
Juan J. Clariá
Affiliation:
Instituto Venezolano de Astronomía, Mérida, Venezuela

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A method is described by means of which the chemical composition parameters (X, Y, Z) may be derived for galactic clusters that contain evolved red giant members and for which the cluster reddening and distance moduli are known. The method is based on observations of the evolved stars utilizing the DDO intermediate-band system. First, the DDO photometry by itself allows one to separate with a high degree of certainty the physical members of the clusters from the field stars. In cases where membership in the cluster can be confirmed, the unreddened DDO colours can be used to obtain the effective temperatures, surface gravities and metal abundances (Z) of the stars. These data combined with the absolute magnitudes available from the distance modulus permit the masses to be calculated. Finally, if some of the observed red giants form part of a clump on the giant brach in the HR diagram, the helium abundance (Y) of the clusters can be estimated by comparing the derived physical parameters of these stars with theoretical models. An example of the application of the method to the galactic cluster NGC 2420 is given.

Type
Part III/Derivation of Abundances Through Photometric and Spectroscopic Methods
Copyright
Copyright © Reidel 1976 

References

Gross, P. G.: 1973, Monthly Notices Roy. Astron. Soc. 164, 65.CrossRefGoogle Scholar
Janes, K. A.: 1975, Astrophys. J. Suppl. 29, 161.CrossRefGoogle Scholar
McClure, R. D.: 1973, in Fehrenbach, C. and Westerlund, B. (eds.), Spectral Classification and Multicolour Photometry , p. 162.CrossRefGoogle Scholar
McClure, R. D., Forrester, W. T., and Gibson, J.: 1974, Astrophys. J. 189, 409.CrossRefGoogle Scholar
McClure, R. D. and Racine, R.: 1969, Astron. J. 74, 1000.CrossRefGoogle Scholar
McClure, R. D. and van den Bergh, S.: 1968, Astron. J. 73, 313.CrossRefGoogle Scholar
Newell, E. B., Rodgers, A. W., and Searle, L.: 1969a, Astrophys. J. 156, 597.CrossRefGoogle Scholar
Newell, E. B., Rodgers, A. W., and Searle, L.: 1969b, Astrophys. J. 158, 699.CrossRefGoogle Scholar
Osborn, W.: 1973, Astrophys. J. 186, 725.CrossRefGoogle Scholar
Osborn, W.: 1974, Monthly Notices Roy. Astron. Soc. 168, 291.CrossRefGoogle Scholar
Osborn, W.: 1975, Monthly Notices Roy. Astron. Soc. 172, 631.CrossRefGoogle Scholar
Philip, A. G. D.: 1972, Astrophys. J. (Letters) 171, L51.CrossRefGoogle Scholar