No CrossRef data available.
Published online by Cambridge University Press: 18 September 2017
Despite similar evolutionary histories and a common ultimate fate as white dwarfs, central stars of planetary nebulae have surprisingly diverse spectral properties. Their visual spectral types encompass all varieties known for hot stars, including Wolf-Rayet, O and Of, subdwarf O, white-dwarf, and continuous (Aller 1968, 1976), and O VI-emission types (Smith and Aller 1969, Heap 1982). Their spectroscopic temperatures range from less than 30,000°K (e.g. He 2-138, Mendez and Niemela 1979; the WC 11 stars, Houziaux and Heck 1982) to upwards to 150,000°K or more (e.g. NGC 246, Heap 1975; Abell 30, Greenstein 1981). Their atmospheres range from demonstrably helium- and carbon-rich (e.g. the WR stars, Barlow and Hummer 1982, Benvenutı et al. 1982) to apparently normal (e.g. the Of stars, Heap 1977a,b), to helium-poor (e.g. the nascent white dwarfs in Abell 7 and NGC 7293, where gravitational settling appears to have already taken effect, Mendez et al. 1981).