Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-12T09:42:15.891Z Has data issue: false hasContentIssue false

Hypernovae: SNe 1997ef, 1998bw, and 1997cy

Published online by Cambridge University Press:  25 May 2016

T. Nakamura
Affiliation:
Department of Astronomy and Research Center for the Early Universe, University of Tokyo, Japan
K. Maeda
Affiliation:
Department of Astronomy and Research Center for the Early Universe, University of Tokyo, Japan
K. Iwamoto
Affiliation:
Department of Physics, College of Science and Technology, Nihon University, Japan
T. Suzuki
Affiliation:
Department of Physics, College of Science and Technology, Nihon University, Japan
K. Nomoto
Affiliation:
Department of Physics, College of Science and Technology, Nihon University, Japan
P. A. Mazzali
Affiliation:
Department of Physics, College of Science and Technology, Nihon University, Japan
M. Turatto
Affiliation:
Osservatorio Astronomico di Padova, vicolo dell'Osservatorio, Padova, Italy
I. J. Danziger
Affiliation:
Osservatorio Astronomico di Trieste, via G. B. Tiepolo, Trieste, Italy
F. Patat
Affiliation:
European Southern Observatory, Garching, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss the properties of the very energetic Type Ic supernovae (SNe Ic) 1998bw and 1997ef, and of Type IIn supernova (SN IIn) 1997cy. SNe Ic 1998bw and 1997ef are characterized by their large luminosity and very broad spectral features. Their observed properties can be explained if they are very energetic SN explosions (EK ≳ 1 × 1052 erg), originating probably from the core collapse of the bare C+O cores of massive stars (~ 30–40M). At late times, both the light curve and the spectra suggest that the explosion may have been asymmetric; this may help us understand the claimed connection with GRBs. Type IIn SN 1997cy is even more luminous than SN 998bw, and the light curve declines more slowly than the 56Co decay. We model such a light curve with circumstellar interaction, which requires the explosion energy of ~ 5 × 1052 erg. Because these kinetic energies of explosion are much larger than in normal core-collapse SNe, we call objects like these SNe “hypernovae”.

Type
Part I: Talks
Copyright
Copyright © Astronomical Society of the Pacific 2000 

References

Aloy, M. A., Ibáñez, J. M. A., Martí, J. M. A., Gómez, J.-L., & Müller, E. 1999, ApJ, 523, L125.CrossRefGoogle Scholar
Bloom, J. S. et al. 1999, Nature, 401, 453.CrossRefGoogle Scholar
Filippenko, A. V., et al. 1997, IAU Circ. No. 6783, 6809.Google Scholar
Galama, T. J., et al. 1998, Nature, 395, 670.Google Scholar
Galama, T. J., et al. 2000, ApJ, submitted.Google Scholar
Garnavich, P., et al. 1997, IAU Circ. No. 6778, 6786, 6798.Google Scholar
Germany, L. M., Reiss, D. J., Sadler, E. M., Schmidt, B. P., & Stubbs, C. W. 2000, ApJ, submitted.Google Scholar
Hachisu, I., Matsuda, T., Nomoto, K., & Shigeyama, T. 1991, ApJ, 368, L27.Google Scholar
Höflich, P., Wheeler, J. C., & Wang, L. 1999, ApJ, 521, 179.Google Scholar
Ikuta, C. 1998, , .Google Scholar
Iwamoto, K., et al. 1998, Nature, 395, 672.Google Scholar
Iwamoto, K., et al. 2000, ApJ, in press.Google Scholar
Kulkarni, S. R., et al. 1998, Nature, 395, 663.Google Scholar
Lucy, L. B. 2000, A&A, in press.Google Scholar
MacFadyen, A. I., & Woosley, S. E. 1999, ApJ, 524, 262.Google Scholar
Mazzali, P. A. 2000, A&A, submitted.Google Scholar
Mazzali, P. A., & Lucy, L. B. 1993, A&A, 279, 447.Google Scholar
Nagataki, S., Hashimoto, M.-A., Sato, K., & Yamada, S. 1997, ApJ, 486, 1026.Google Scholar
Nomoto, K., & Hashimoto, M. 1988, Phys. Rep., 256, 173.CrossRefGoogle Scholar
Nomoto, K., Yamaoka, H., Pols, O. R., van den Heuvel, E. P. J., Iwamoto, K., Kumagai, S., & Shigeyama, T. 1994, Nature, 371, 227.CrossRefGoogle Scholar
Nomoto, K., et al. 1997, Nucl. Phys. A, 616, 79.Google Scholar
Patat, F., et al. 2000a, Mem. Soc. Astron. Italy, in press.Google Scholar
Patat, F., et al. 2000b, ApJ, submitted.Google Scholar
Reichart, D. E. 1999, ApJ, 521, L111.Google Scholar
Shigeyama, T., & Nomoto, K. 1990, ApJ, 360, 242.Google Scholar
Suzuki, T., & Nomoto, K. 1995, ApJ, 455, 658.Google Scholar
Terlevich, R., Tenorio-Tagle, G., Franco, J., & Melnick, J. 1992, MNRAS, 255, 713.Google Scholar
Thielemann, F.-K., Nomoto, K., & Hashimoto, M. 1996, ApJ, 460, 408.Google Scholar
Timmes, F. X., Woosley, S. E., & Weaver, T. A. 1995, ApJS, 98, 617.Google Scholar
Turatto, M., Cappellaro, E., Danziger, I. J., Benetti, S., Gouiffes, C., & della Valle, M. 1993, MNRAS, 262, 128.CrossRefGoogle Scholar
Turatto, M., et al. 2000, ApJ, submitted.Google Scholar
Wang, L.-F., & Wheeler, J. C. 1998, ApJ, 504, L87.CrossRefGoogle Scholar
Woosley, S. E., Eastman, R. G., & Schmidt, B. P. 1999, ApJ, 516, 788.Google Scholar