Hostname: page-component-cc8bf7c57-fxdwj Total loading time: 0 Render date: 2024-12-12T06:23:02.552Z Has data issue: false hasContentIssue false

Growth of Methanogens on a Mars Soil Simulant Under Simulated Martian Conditions

Published online by Cambridge University Press:  19 September 2017

Timothy A. Kral
Affiliation:
Arkansas-Oklahoma Center for Space and Planetary Sciences, SCIE-416, University of Arkansas, Fayetteville, AR 72701, U.S.A.
Curtis R. Bekkum
Affiliation:
Department of Biological Sciences, SCIE-416, University of Arkansas, Fayetteville, AR 72701, U.S.A.
Christopher P. Mckay
Affiliation:
Space Science Division, NASA Ames Research Center, Mail Stop 245-3, Moffett Field, CA 94035, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Due to the hostile conditions at the surface, any life forms existing on Mars today would most likely inhabit a subsurface environment where conditions are potentially wetter and warmer, but organic compounds may be lacking and light energy for photosynthesis would be absent. Methanogens, members of the domain Archaea, are microorganisms from planet Earth that can grow under these relatively extreme conditions. We have demonstrated that certain methanogenic species can indeed grow on a Mars soil simulant, JSC Mars-1, with limited amounts of water, under conditions approaching a possible subsurface environment on Mars.

Type
Archaea
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Allen, C. C., Jager, K. M., Morris, R. V., Lindstrom, D. J., Lindstrom, M. M., & Lockwood, J. P. 1998, in Space 98, ed. Galloway, R. G. & Lokaj, S., (NY: American Society of Civil Engineers), 469 Google Scholar
Boone, D. R., Johnson, R. L., & Liu, Y. 1989, Appl. Environ. Microbio., 55, 1735 Google Scholar
Boston, P. J., Ivanov, M. V., & McKay, C. P. 1992, Icarus, 95, 300 Google Scholar
Klein, H. P. 1978, Icarus, 34, 666 Google Scholar
Klein, H. P. 1979, Rev. Geophys. Space Phys., 17, 1655 Google Scholar
McKay, C. P. 1997, Origins Life Evol. Biosphere, 27, 263 Google Scholar
McKay, C. P., Friedman, E. I., Wharton, R. A., & Davies, W. L. 1992, Adv. Space Res., 12, 231 CrossRefGoogle Scholar
McKay, C. P., & Stoker, C. R. 1989, Rev. Geophys., 27, 189 CrossRefGoogle Scholar
Mitrofanov, I., et al. 2002, Science Online, http://www.sciencemag.org/cgi/content/abstract/107361vl.Google Scholar
Ni, S., & Boone, D.R. 1991, Int. J. Syst. Bacteriol., 41, 410 Google Scholar
Stevens, T. O., & McKinley, J.P. 1995, Science, 270, 450 Google Scholar
Xun, L., Boone, D. R., & Mah, R. A. 1988, Appl. Environ. Microbio., 54, 2064 Google Scholar
Zinder, S. H. 1993, in Methanogenesis, ed. Ferry, J. G., NY: Chapman & Hall), 128 Google Scholar