Hostname: page-component-cc8bf7c57-n7pht Total loading time: 0 Render date: 2024-12-12T06:29:44.307Z Has data issue: false hasContentIssue false

A Galactic Example of a Massive Chimney

Published online by Cambridge University Press:  26 May 2016

N. M. McClure-Griffiths
Affiliation:
Australia Telescope National Facility, CSIRO, PO Box 76, Epping NSW 1710, Australia
J. M. Dickey
Affiliation:
Department of Astronomy, University of Minnesota, 116 Church St SE, Minneapolis, MN 55455, USA
B. M. Gaensler
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St MS-6, Cambridge, MA 02138, USA
A. J. Green
Affiliation:
School of Physics, Sydney University A28, NSW 2006, Australia

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One mechanism for spreading hot, metal enriched gas away from galaxies is through gigantic chimneys formed in the disk of a galaxy. Chimneys form when shells or bubbles blown by many massive stellar winds and supernova explosions grow large enough to exceed the neutral hydrogen (H I) scale height of the disk. The shells then become unstable at their polar regions and expand rapidly, breaking out to the galaxy's halo. If galactic fountain models are correct the hot gas liberated by these chimneys should cool into H I cloudlets high above the galaxy's disk. The Milky Way provides the nearest laboratory to search for these objects in order to study how they form and the fate of the expelled gas. While we expect tens of chimneys in the Milky Way to account for the thermal support of the halo there are only a few known chimneys. Here we present an H I study of one Galactic chimney GSH 277+00+36. GSH 277+00+36 is the the only chimney known to have blown out of both sides of a galactic disk. We discuss the development of Rayleigh-Taylor instabilities in this object and the role those may have had in the formation of the chimney.

Type
Part 3. Ejection and Outflow
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Breitschwerdt, D., Freyberg, M. J., & Egger, R. 2000, A&A, 361, 303.Google Scholar
Callaway, M. B., Savage, B. D., Benjamin, R. A., Haffner, L. M., & Tufte, S. L. 2000, ApJ, 532, 943.CrossRefGoogle Scholar
de Avillez, M. A. 2000, MNRAS, 315, 479.CrossRefGoogle Scholar
de Avillez, M. A. & Berry, D. L. 2001, MNRAS, 328, 708.CrossRefGoogle Scholar
de Avillez, M. A. & Breitschwerdt, D. 2003, Revista Mexicana de Astronomia y Astrofisica Conference Series, 15, 299.Google Scholar
Mac Low, M. & McCray, R. 1988, ApJ, 324, 776.CrossRefGoogle Scholar
Mac Low, M., McCray, R., & Norman, M. L. 1989, ApJ, 337, 141.CrossRefGoogle Scholar
McClure-Griffiths, N. M., Dickey, J. M., Gaensler, B. M., & Green, A. J. 2002, ApJ, 578, 176.CrossRefGoogle Scholar
McClure-Griffiths, N. M., Dickey, J. M., Gaensler, B. M., & Green, A. J. 2002, ApJ, 594, 833.CrossRefGoogle Scholar
Müller, P., Wennmacher, A., & Reif, K. 1989, Astronomische Gesellschaft Abstract Series, 3, 98.Google Scholar
Normandeau, M., Taylor, A. R., & Dewdney, P. E. 1996, Nature, 380, 687.CrossRefGoogle Scholar
Tomisaka, K. 1998, MNRAS, 298, 797.CrossRefGoogle Scholar