Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T05:00:56.205Z Has data issue: false hasContentIssue false

Feeding the Central Engine in Giant Radio Galaxies

Published online by Cambridge University Press:  25 May 2016

I. F. Mirabel
Affiliation:
Service d'Astrophysique. Centre d'Etudes de Saclay. 91191 Gif/Yvette, France Instituto de Astronomía y Física del Espacio. c.c. 67, suc 28. (1428) Buenos Aires, Argentina
O. Laurent
Affiliation:
Service d'Astrophysique. Centre d'Etudes de Saclay. 91191 Gif/Yvette, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Giant radio galaxies are thought to be massive ellipticals powered by accretion of interstellar matter onto a supermassive black hole. Interactions with gas rich galaxies may provide the interstellar matter to feed the active galactic nucleus (AGN). To power radio lobes that extend up to distances of hundreds of kiloparsecs, gas has to be funneled from kiloparsec size scales down to the AGN at rates of ˜1 M yr−1 during ≥108 years. Therefore, large and massive quasi-stable structures of gas and dust should exist in the deep interior of the giant elliptical hosts of double lobe radio galaxies. Recent mid-infrared observations with ISO revealed for the first time a bisymmetric spiral structure with the dimensions of a small galaxy at the centre of Centaurus A (Mirabel et al. 1999). The spiral was formed out of the tidal debris of accreted gas-rich object(s) and has a dust morphology that is remarkably similar to that found in barred spiral galaxies. The observations of the closest AGN to Earth suggest that the dusty hosts of giant radio galaxies like CenA, are “symbiotic” galaxies composed of a barred spiral inside an elliptical, where the bar serves to funnel gas toward the AGN.

Type
II. Observational Properties of AGN and Related Objects
Copyright
Copyright © Astronomical Society of the Pacific 1999 

References

Athanassoula, E., 1992, MNRAS, 259, 345 Google Scholar
Condon, J.J., Helou, G., Sanders, D.B., Soifer, B.T., 1996, A&AS, 103, 81 Google Scholar
Eckart, A., Cameron, M., Genzel, R. et al., 1990a, ApJ, 365, 522 CrossRefGoogle Scholar
Heckman, T.M. et al., 1986, ApJ, 311, 526 Google Scholar
Ho, L., Filippenko, A. & Sargent, W., 1997, ApJ, 487, 591 Google Scholar
Israel, F.P., van Dishoeck, E.F., Baas, F. et al., 1991, A&A, 245, L13 Google Scholar
Kotanyi, C.G., Ekers, R.D., 1979, A&A, 73, L1 Google Scholar
Malin, D.F., Quinn, P.J., Graham, J.A., 1983, ApJ, 272, L5 Google Scholar
McLeod, K.K. & Rieke, G.H. 1995, ApJ, 441, 96 Google Scholar
Mirabel, I.F., Laurent, O., Sanders, D.B. et al. 1999, A&A, 341, 667 Google Scholar
Mulchaey, J.S. & Regan, M.W., 1997, ApJ, 482, L135 CrossRefGoogle Scholar
Packham, C., Hough, J.H., Young, S. et al., 1996, MNRAS, 278, 406 Google Scholar
Quillen, A.C., de Zeeuw, P.T., Phinney, E.S., Phillips, T.G., 1992, ApJ, 391, 121 CrossRefGoogle Scholar
Quillen, A.C., Graham, J.R., Frogel, J.A., 1993, ApJ, 412, 550 Google Scholar
Regan, M.W. & Mulchaey, J.S. 1999, AJ, in press Google Scholar
Robson, E.I., Leeuw, L.L., Stevens, J.A., Holland, W.S., 1998, MNRAS, 301, 935 Google Scholar
Rydbeck, G., Wiklind, T., Cameron, M. et al., 1993, A&A, 270, L13 Google Scholar
Shlosman, I., Frank, J., Begelman, M.C., 1989, Nature, 338, 45 Google Scholar
van Dokkum, P.G., Franx, M., 1995, AJ 110, 2027 Google Scholar
Wilkinson, A., Sharpies, R.M., Fosbury, R.A., Wallace, P.T., 1986, MNRAS, 218, 297 CrossRefGoogle Scholar