Hostname: page-component-cc8bf7c57-xrnlw Total loading time: 0 Render date: 2024-12-12T05:39:22.487Z Has data issue: false hasContentIssue false

Evidence for Past Life on Early Mars: How the Evidence Stands

Published online by Cambridge University Press:  19 September 2017

Everett K. Gibson
Affiliation:
Astromaterials Research Office, NASA Johnson Space Center, Mail Code SR, Houston, Texas 77058, USA
Kathie L. Thomas-Keprta
Affiliation:
Lockheed Martin Space Operations, Mail Code C-23, Houston, Texas 77058, USA
Simon J. Clemett
Affiliation:
Lockheed Martin Space Operations, Mail Code C-23, Houston, Texas 77058, USA
David S. Mckay
Affiliation:
Astromaterials Research Office, NASA Johnson Space Center, Mail Code SR, Houston, Texas 77058, USA
Christopher Romanek
Affiliation:
Savannah River Ecology Laboratory, Drawer E, University of Georgia, Aiken SC 29802, USA
Susan J. Wentworth
Affiliation:
Lockheed Martin Space Operations, Mail Code C-23, Houston, Texas 77058, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Martian Meteorite ALH84001 contains four unusual features which have been interpreted as possible signatures of relic biogenic activity. After six years of intense study by the world's scientific community, the current status of the biogenic hypothesis is reviewed and shown to still be valid. Furthermore additional features have been observed in two younger Martian meteorites. The strongest argument for possible evidence of biogenic activity within the ALH84001 meteorite is the presence of truncated hexa-octahedral magnetite crystals which are only known on Earth to be the products of biology.

Type
Planetary Science
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Bagin, V. I., et al. 1974, Izv. Earth. Phys., 6, 73 Google Scholar
Barber, D. J., & Scott, E. R. D. 2002, PNAS-USA, 99, 6556 CrossRefGoogle Scholar
Bogard, D., & Garrison, D. 1998, MAPS, 33, A19 Google Scholar
Bradley, J. P., et al. 1996, GCA, 60, 765 Google Scholar
Brearley, A. J., 1998 LPSC 29, CD-ROM #1451 Google Scholar
Chai, L., & Navortsky, A. 1996, GCA, 60, 4377 Google Scholar
Clemett, S. J., et al. 1998, Faraday Disc., 109, 417 CrossRefGoogle Scholar
Clemett, S. J., et al. 2002, Am. Min., 87, 1727 Google Scholar
Dubrawski, J. V. 1991, J. Therm. Ana., 37, 1213 Google Scholar
Eiler, J. M., et al. 2002, GCA, 66, 1285 Google Scholar
Friedmann, E. I., et al. 2001, PNAS-USA, 98, 2176 CrossRefGoogle Scholar
Gibson, E. K. Jr., et al. 2001, Precamb. Res., 106, 15 Google Scholar
Greenwood, J.P., & McKeegan, K. D. 2002, MAPS (Suppl), 37, A58 Google Scholar
Golden, D. C., et al. 2001, Am. Min, 86, 370 Google Scholar
Harvey, R. P., & McSween, H. Y. Jr. 1996, Nature, 382, 49 Google Scholar
Jull, A. J. T., et al. 1998, Sci, 279, 366 Google Scholar
Jull, A. J. T., et al. 2000, GCA, 64, 3763 Google Scholar
Kirschvink, J. L., et al. 1997, Sci, 275, 1629 Google Scholar
Kozio, A. M., & Brearly, A. J. 2002, LPSC, 33, Abst.#1672 (CD-ROM) Google Scholar
McCollom, T. M., 2003, GCA, (in press) Google Scholar
McKay, D. S., et al. 1996, Sci, 286, 924 Google Scholar
Romanek, C. S., et al. 1994, Nature, 372, 655 Google Scholar
Steele, A., et al. 2000, LPSC, 31, Abst.#1670, CD-ROM Google Scholar
Thomas-Keprta, K. L., et al. 2000, GCA, 64, 4049 Google Scholar
Thomas-Keprta, K. L., et al. 2001, PNAS, 98, 2164 Google Scholar
Thomas-Keprta, K. L., et al. 2002, AEM, 68. 3663 CrossRefGoogle Scholar
Thomas-Keprta, K. L., et al. 2003, LPSC, 34, Abst.#1669 (CD-ROM) Google Scholar
Treiman, A. H., & Romanek, C. S. 1998, MAPS, 33, 737 Google Scholar
Valley, J. W., et al. 1997, Science, 275, 1633 Google Scholar