Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-12T20:04:22.014Z Has data issue: false hasContentIssue false

Evidence for Dark Matter in Galactic Systems

Published online by Cambridge University Press:  04 August 2017

Marc Davis*
Affiliation:
Depts. of Physics and Astronomy, University of California, Berkeley, California 94720 U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The evidence for dark matter in binaries and groups of galaxies is very strong, and is seen in all recent observational studies. Measurements of mass in galactic systems is possible on scales ranging from 50 kpc using virial analysis of binary galaxies to 15 Mpc using Virgocentric infall analysis. The Ω estimates derived from these studies are generally consistent with Ω < 0.2, with a fairly weak trend toward larger Ω estimates on larger scales. However, measurements of the galaxy distribution in the IRAS catalog yields a dipole anisotropy consistent in direction with the microwave dipole anisotropy, suggesting that the local galaxy distribution is responsible for the microwave velocity. This will eventually provide the most reliable estimate of Ω, and is likely to result in a value somewhat larger than previous estimates on smaller scales. Study of the velocity field around large clusters in cosmological n-body experiments provides a useful guide for understanding the limitations of the spherically symmetric models of Virgocentric infall. We point out a number of biases that could affect the existing Virgocentric flow studies.

Type
Review Paper
Copyright
Copyright © Reidel 1987 

References

Aaronson, M., Huchra, J., Mould, J. et al. 1985, Ap. J., submitted.Google Scholar
Bean, A.J., Efstathiou, G., Ellis, R.S., Peterson, B.A., and Shanks, T., 1983, M.N.R.A.S., 2 Google Scholar
Blumenthal, G. P. and Primack, J. P. 1983, in Fourth Workshop on Grand Unification, ed. Weldon, H. A., Langacker, P., and Steinhardt, P. J., (Boston: Birkhausen), p. 256.Google Scholar
Davis, M. 1985, in Proceeding of the Inner Space-Outer Space Workshop, Fermilab, 1984, (ed. by Turner, M. and Kolb, R., Univ. of Chicago Press).Google Scholar
Davis, M. and Huchra, J. 1982, Ap. J. 254, 425.CrossRefGoogle Scholar
Davis, M. and Peebles, P. J. E. 1983a, Ann. Rev. of Astron. & Astrophys. 21, 109.Google Scholar
Davis, M. and Peebles, P. J. E. 1983b, Ap. J. 267, 465.Google Scholar
Davis, M., Frenk, C.S., Efstathiou, G., and White, S.D.M., 1985, Ap. J., 292, 371.Google Scholar
de Vaucouleurs, G. and Peters, W. L. 1984, Ap. J. 287, 1.CrossRefGoogle Scholar
Dressler, A. 1984, Ap. J. 281, 512.CrossRefGoogle Scholar
Faber, S. M. and Gallagher, J. S. 1979, Ann. Rev. Astron. & Astrophys. 17, 135.Google Scholar
Fixsen, D. J., Cheng, E. S. and Wilkinson, D. T. 1983, Phys. Rev. Lett. 50, 620.Google Scholar
Geller, M. J., in Clusters and Groups of Galaxies, IAU Trieste meeting.Google Scholar
Hart, L. and Davies, R. D. 1982, Nature 297, 191.Google Scholar
Lubin, P. M., Epstein, G. L. and Smoot, G. F. 1983, Phys. Rev. Lett. 50, 616.Google Scholar
Meiksin, A. and Davis, M. 1985, A.J., submitted.Google Scholar
Nolthenius, R. and White, S. 1986, (abstract in this volume).Google Scholar
Peebles, P. J. E. 1980, The Large Scale Structure of the Universe, Princeton Press.Google Scholar
Press, W. H. and Davis, M. 1982, Ap. J. 259, 449.CrossRefGoogle Scholar
Schweizer, L. 1985, , UC Berkeley.Google Scholar
Tonry, J. and Davis, M. 1981, Ap. J. 246, 680.CrossRefGoogle Scholar
Villumsen, J. and Davis, M. 1985, in preparation.Google Scholar
White, S., Huchra, J., Latham, D. and Davis, M. 1983, M.N.R.A.S. 203, 701.Google Scholar
Yahil, A., Walker, D. and Rowan-Robinson, M. 1985, preprint.Google Scholar
Zwicky, F. 1933, Helv. Phys. Acta 6, 110.Google Scholar