Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T13:10:55.578Z Has data issue: false hasContentIssue false

Dust Destruction in the Interstellar Medium

Published online by Cambridge University Press:  23 September 2016

Christopher F. McKee*
Affiliation:
Departments of Physics and Astronomy University of California, Berkeley, CA 94720

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Grains are injected into the interstellar medium (ISM) from evolved stars and supernovae; in addition, supernova ejecta may condense onto pre-existing grains before becoming well-mixed with the interstellar gas. Once in the ISM, grains can grow by accretion, but are also subject to destruction by interstellar shocks. The current status of the theory of shock destruction of interstellar grains is reviewed briefly. Small grains are destroyed by thermal sputtering in fast, nonradiative shocks; large grains are destroyed by grain-grain collisions and eroded by nonthermal sputtering in radiative shocks. The dominant shocks in the ISM are from supernova remnants (SNRs), and the mass of grains destroyed is proportional to the energy of the SNR. In a multiphase ISM, these shocks destroy the grains at a rate proportional to the volume filling factor of the phase; since the density of the hot phase is too low for efficient grain destruction, most of the destruction occurs in the warm phase. Not all SNRs are effective at destroying grains, however: some are above the gas disk, and some —Type IPs in associations—are highly correlated in space and time. The galactic SN rate is observed to about 2.2 per century (van den Bergh, 1983), but the effective supernova rate for grain destruction is estimated to be only about 0.8 per century. As a result, the timescale for the destruction of a typical refractory grain in the ISM is inferred to be about 4 × 108 yr for either a two-phase or a three-phase ISM. Most of the refractory material in the ISM (other than carbon) is injected by supernovae, not evolved stars; the net injection timescale is estimated as about 1.5 × 109 yr. Comparison of the destruction and injection timescales indicates that the fraction of grains injected by stars which survive in the ISM is only about 20%. Most of the refractory material in interstellar grains must, therefore, have accreted onto the grains in the ISM. Nonetheless, a significant fraction of dust formed in stars survives in the ISM and may be detectable in meteorites and interplanetary dust particles.

Type
Section VIII: Dust Formation and Destruction
Copyright
Copyright © Kluwer 1989 

References

Anders, E. 1989, in IAU Symposium 135, Interstellar Dust, eds. Allamandola, L. J. and Tielens, A. G. G. M., (Dordrecht: Kluwer), p. 389.Google Scholar
Barlow, M. J. 1978a, M. N. R. A. S., 183, 367.Google Scholar
Barlow, M. J. 1978b, M. N. R. A. S., 183, 397.Google Scholar
Barlow, M. J. 1978c, M. N. R. A. S., 183, 417.Google Scholar
Barlow, M. J. and Silk, J. 1977, Ap. J. (Letters), 211, L83.CrossRefGoogle Scholar
Becker, R. H., Holt, S. S., Smith, B. W., White, N. E., Boldt, E. A., Mushotzky, R. F., and Serlemitsos, P. J. 1979, Ap. J. (Letters), 234, L73.CrossRefGoogle Scholar
Blair, W. P., Kirshner, R. P., and Chevalier, R. A. 1981, Ap. J., 247, 879.Google Scholar
Braun, R., and Strom, R. G. 1986, Astr. Ap., 164, 208.Google Scholar
Brownlee, D. E. 1987, in Proceedings of the Summer School on Interstellar Processes, eds. Hollenbach, D. J. and Thronson, H. A. Jr., (Dordrecht:Reidel), p. 513.CrossRefGoogle Scholar
Charles, P. A., Kahn, S. M., and McKee, C. F. 1985, Ap. J., 295, 456.Google Scholar
Cioffi, D. F., McKee, C. F., and Bertschinger, E. 1988, Ap. J., in press.Google Scholar
Clark, D. H., and Caswell, J. L. 1976, M. N. R. A. S., 174, 267.CrossRefGoogle Scholar
Clayton, D. D. 1982, Quart. J. R. A. S., 23, 174.Google Scholar
Cowie, L. L. 1978, Ap. J., 225, 887.Google Scholar
Dopita, M. A. 1979, Ap. J. Supply 40, 455.CrossRefGoogle Scholar
Draine, B. T., and Salpeter, E. E. 1979a, Ap. J., 231, 77.Google Scholar
Draine, B. T., and Salpeter, E. E. 1979b, Ap. J., 231, 438.CrossRefGoogle Scholar
Dwek, E. and Scalo, J. M. 1980, Ap. J., 239, 193.Google Scholar
Field, G. B. 1974, Ap. J., 187, 453.Google Scholar
Gies, D. R. 1987, Ap. J. Suppl., 64, 545.Google Scholar
Gondhalekar, P. M. 1985, M. N. R. A. S., 216, 57P.Google Scholar
Greenberg, J. M., and Hong, S. S. 1974. in IAU Symposium 60, Galactic Radio Astronomy, eds. Kerr, F. J. and Simonson, S. C. II, (Dordrecht: D. Reidel), p. 155.Google Scholar
Gusten, R., and Mezger, P. G. 1982, Vistas in Astronomy, 26, 159.Google Scholar
Hamilton, A. J. S., Sarazin, C. L., and Szymkowiak, A. E. 1986a, Ap. J., 300, 698.Google Scholar
Hamilton, A. J. S., Sarazin, C. L., and Szymkowiak, A. E. 1986b, Ap. J., 300, 713.CrossRefGoogle Scholar
Heiles, C. 1987, Ap. J., 315, 555.Google Scholar
Hollenbach, D., and McKee, C. F. 1979, Ap. J. Suppl., 41, 555.Google Scholar
Humphreys, R. M., and McElroy, D. B. 1984, Ap. J., 284, 565.Google Scholar
Jenkins, E. B., Savage, B. D., and Spitzer, L. 1986, Ap. J., 301, 355.CrossRefGoogle Scholar
Jura, M. 1976, Ap. J., 206, 691.Google Scholar
Jura, M. 1987, in Proceedings of the Summer School on Interstellar Processes, eds. Hollenbach, D. J. and Thronson, H. A. Jr., (Dordrecht:Reidel), p. 3.Google Scholar
Ku, W. H.-M., Kahn, S. M., Pisarski, R., and Long, K. S. 1984, Ap. J., 278, 615.Google Scholar
Larson, R. B. 1987, in Starbursts and Galaxy Evolution, eds. Thuan, T. X., Montmerle, T., and Tran Thanh Van, J. (Paris: Editions Frontieres), p. 467.Google Scholar
Liffman, K., and Clayton, D. D. 1988, in Proceedings of the Eighteenth Lunar and Planetary Science Conference, (Cambridge: Cambridge University Press), p. 637.Google Scholar
McCray, R., and Kafatos, M. 1987, Ap. J., 317, 190.CrossRefGoogle Scholar
McKee, C. F. 1989, in preparation.Google Scholar
McKee, C. F., and Cowie, L. L. 1975, Ap. J., 195, 715.CrossRefGoogle Scholar
McKee, C. F., Hollenbach, D. J., Seab, C. G., and Tielens, A. G. G. M. 1987, Ap. J., 318, 674.CrossRefGoogle Scholar
McKee, C. F., and Ostriker, J. P. 1977, Ap. J., 218, 148.Google Scholar
McKee, C. F., Van Buren, D., and Lazareff, B. 1984, Ap. J. (Letters), 278, L115.Google Scholar
Narayan, R. 1987, Ap. J., 319, 162.Google Scholar
Nuth, J. A., and Moore, M. H. 1988, Ap. J. (Letters), 329, L113.Google Scholar
Ostriker, J. P. and McKee, C. F. 1988, Rev. Mod. Phys., 60, 1.CrossRefGoogle Scholar
Roche, P. F. and Aitken, D. K. 1984, M. N. R. A. S., 208, 481.Google Scholar
Sagan, C. 1972, Nature, 238, 77.Google Scholar
Salpeter, E. E. 1977, Ann. Rev. Astr. Ap., 15, 267.CrossRefGoogle Scholar
Sandford, S. 1989, in IAU Symposium 135, Interstellar Dust, eds. Allamandola, L. J. and Tielens, A. G. G. M, (Dordrecht: Kluwer), p. 403.Google Scholar
Scalo, J. M. 1986, Fund. Cos. Phys., 11, 1.Google Scholar
Scoville, N. Z., and Sanders, D. B. 1987, in Proceedings of the Summer School on Interstellar Processes, eds. Hollenbach, D. J. and Thronson, H. A. Jr., (Dordrecht: Reidel), p. 21.Google Scholar
Seab, C. G. 1987, in Proceedings of the Summer School on Interstellar Processes, eds. Hollenbach, D. J. and Thronson, H. A. Jr., (Dordrecht: Reidel), p. 491.Google Scholar
Seab, C. G. and Shull, J. M. 1983, Ap. J., 275, 652.Google Scholar
Shull, J. M. 1977, Ap. J., 215, 805.Google Scholar
Shull, J. M. 1978, Ap. J., 226, 858.Google Scholar
Shull, J. M., York, D. G., Hobbs, R. W. 1977, Ap. J. (Letters), 211.Google Scholar
Spitzer, L. 1976, Comments Ap., 6, 177.Google Scholar
Tammann, G. A. 1982, in Supernovae: A Survey of Current Research, eds. Rees, M. and Stoneham, R., (Dordrecht: Reidel), p. 371.Google Scholar
Tielens, A. G. G. M. 1989, in IAU Symposium 135, Interstellar Dust, eds. Allamandola, L. J. and Tielens, A. G. G. M, (Dordrecht: Kluwer), p. 239.Google Scholar
Tielens, A. G. G. M., McKee, C. F., Seab, C. G., and Hollenbach, D. J. 1989, in preparation.Google Scholar
Tielens, A. G. G. M. and Allamandola, L. J. 1987, in Proceedings of the Summer School on Interstellar Processes, eds. Hollenbach, D. J. and Thronson, H. A. Jr., (Dordrecht: Reidel), p. 397.Google Scholar
Tielens, A. G. G. M., Seab, C. G., Hollenbach, D. J., and McKee, C. F. 1987, Ap. J. (Letters), 319, L109.Google Scholar
van den Bergh, S. 1983, Pub. A. S. P., 95, 388.Google Scholar
van den Bergh, S., McClure, R. D., and Evans, R. 1987, ApJ, 323, 44.Google Scholar
Woosley, S. E., and Weaver, T. A. 1986, Ann. Rev. Astr. Ap., 24, 205.CrossRefGoogle Scholar