Published online by Cambridge University Press: 26 May 2016
Using detailed Monte Carlo radiative transfer modeling, we examine the effects of absorption and scattering by interstellar dust on the observed kinematics of galaxies. Our modeling results have a direct impact on the derivation of the properties of dark matter haloes around both elliptical and spiral galaxies. We find that interstellar dust has a very significant effect on the observed stellar kinematics of elliptical galaxies, in the way that it mimics the presence of a dark matter halo. Taking dust into account in kinematical modeling procedures can reduce or even eliminate the need for dark matter at a few effective radii. Dust profoundly affects the optical rotation curve and stellar kinematics of edge-on disc galaxies. This effect, however, is significantly reduced when the galaxy is more than a few degrees from strictly edge-on. These results demonstrate that dust attenuation cannot be invoked as a possible mechanism to reconcile the discrepancies between the observed shallow slopes of LSB galaxy rotation curves and the dark matter cusps found in CDM cosmological simulations.