Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-07T16:10:56.585Z Has data issue: false hasContentIssue false

Diffuse cosmic X-rays from non-thermal intergalactic bremsstrahlung

Published online by Cambridge University Press:  14 August 2015

Joseph Silk*
Affiliation:
Institute of Theoretical Astronomy, Cambridge, England

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The diffuse X-ray background between 1 keV and 1 MeV is interpreted as non-thermal bremsstrahlung in the intergalactic medium. The observed break in the X-ray spectrum at ∼40 keV yields the heat input to the intergalactic medium, the break being produced by ionization losses of sub-cosmic rays. Proton bremsstrahlung is found not to yield as satisfactory an agreement with observations as electron bremsstrahlung: excessive heating tends to occur. Two alternative models of cosmic ray injection are discussed, one involving continuous injection by evolving sources out to a redshift of about 3, and the other model involving injection by a burst of cosmic rays at a redshift of order 10. The energy density of intergalactic electrons required to produce the observed X-rays is ∼ 10−4 eV/cm3. Assuming a high density (∼ 10−5 cm−3) intergalactic medium, the energy requirement for cosmic ray injection by normal galaxies is ∼ 1058–59ergs/galaxy in sub-cosmic rays. The temperature evolution of the intergalactic medium is discussed, and we find that a similar energy input is also required to explain the observed high degree of ionization (if 3C9 is at a cosmological distance).

Type
Research Article
Copyright
Copyright © Reidel 1970 

References

Arons, J., McCray, R., and Silk, J.: 1970, (to be published).Google Scholar
Bekefi, G.: 1966, Radiation Processes in Plasmas, John Wiley, New York.Google Scholar
Bergamini, R., Londrillo, P., and Setti, G.: 1967, Nuovo Cimento 52B, 495.Google Scholar
Brecher, K. and Morrison, P.: 1967, Astrophys. J. 150, L61.Google Scholar
Brecher, K. and Morrison, P.: 1969, Phys. Rev. Letters 23, 802.Google Scholar
Bunner, A. N., Coleman, P. C., Kraushaar, W. L., McCammon, D., Palmieri, T. M., Shilepsky, A., and Ulmer, M.: 1969, Nature 223, 1222.Google Scholar
Felten, J. E. and Morrison, P.: 1966, Astrophys. J. 146, 686.Google Scholar
Felten, J. E. and Rees, M. J.: 1969, Nature 221, 924.Google Scholar
Ginzburg, V. L. and Ozernoi, L. M.: 1966, Soviet Astron. - AJ 9, 726.Google Scholar
Hayakawa, S. and Matsuoka, M.: 1964, Supp. Prog. Theor. Phys. 30, 204.Google Scholar
Kardashev, N. S.: 1962, Soviet Astron. - AJ 6, 317.Google Scholar
Longair, M. S.: 1966, Monthly Notices Roy. Astron. Soc. 133, 421.Google Scholar
Montgomery, D. C. and Tidman, D. A.: 1964, Plasma Kinetic Theory, McGraw-Hill, New York.Google Scholar
Oda, M.: 1965, Proc. Internat. Conf. Cosmic Rays (London).Google Scholar
Pikel'ner, S. B. and Tsytovich, V. N.: 1969, Sov. Astron. - A.J. 13, 5.Google Scholar
Rees, M. J. and Setti, G.: 1968, Nature 219, 127.Google Scholar
Rees, M. J. and Silk, J.: 1969, Astron. Astrophys. 3, 452.Google Scholar
Sandage, A.: 1968, Astrophys. J. 152, L149.Google Scholar
Schmidt, M.: 1968, Astrophys. J. 151, 393.Google Scholar
Sciama, D. W.: 1964, Quart. J. Roy. Astron. Soc. 5, 196.Google Scholar
Silk, J.: 1968, Astrophys. J. 151, L19.Google Scholar
Silk, J.: 1969, Nature 221, 347.Google Scholar
Silk, J. and McCray, R.: 1969, Astrophys. Lett. 3, 59.Google Scholar