Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T03:38:25.125Z Has data issue: false hasContentIssue false

Chaotic temporal variations in cosmic masers

Published online by Cambridge University Press:  03 August 2017

Abraham C.-L. Chian
Affiliation:
National Institute for Space Research - INPE, P. O. Box 515, São José dos Campos-SP 12201-970, Brazil
Erico L. Rempel
Affiliation:
National Institute for Space Research - INPE, P. O. Box 515, São José dos Campos-SP 12201-970, Brazil
Félix A. Borotto
Affiliation:
Universidad de Concepción, Departamento de Física, Concepción, Chile

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Electron cyclotron maser emission is an accepted physical mechanism for generating coherent planetary and stellar radio emissions. Observational data has indicated evidence of nonlinear and chaotic temporal variability in some cosmic masers such as solar microwave spikes. The nonlinear and chaotic characteristics of cosmic masers can be attributed to plasma turbulence, such as Alfvén chaos, embedded in the emission region. We report a chaos theory of Alfvén waves which can account for chaotic acceleration of electrons in the source region of cosmic masers. Two types of Alfvén intermittency are identified: Pomeau-Manneville intermittency and crisis-induced intermittency. Since Alfvén waves may be responsible for accelerating electrons that emit maser radiations, the chaotic dynamics of Alfvén waves may be the origin of chaotic time variations of cosmic masers. Hence, we suggest that Alfvén intermittency may cause intermittent temporal fluctuations which can be observed in cosmic masers.

Type
Part 7. Maser Theory
Copyright
Copyright © Astronomical Society of the Pacific 2002 

References

Aschwanden, M. J., Benz, A.O., Dennis, B. R., & Kundu, M. R. 1994, ApJS, 90, 631.CrossRefGoogle Scholar
Chian, A. C.-L. & Alves, M. V. 1988, ApJ, 330, L77.CrossRefGoogle Scholar
Chian, A. C.-L. & Oliveira, L. P. L. 1994, A&A, 286, L1.Google Scholar
Chian, A. C.-L., Abalde, J. R., Alves, M. V., & Lopes, S. R. 1997, Solar Phys., 173, 199.CrossRefGoogle Scholar
Chian, A. C.-L., Borotto, F. A., & Gonzalez, W. D. 1998, ApJ, 503, 993.CrossRefGoogle Scholar
Chian, A. C.-L., Borotto, F. A., Lopes, S. R., & Abalde, J. R. 2000, Planetary Space Sci., 48, 9.CrossRefGoogle Scholar
Grebogi, C. & Ott, E. 1983, Physica, D7, 18.Google Scholar
Isliker, H. & Benz, A. O. 1994, A&A, 285, 663.Google Scholar
Kurth, J., Benz, A. O., & Aschwanden, M. J. 1991, A&A, 248, 270.Google Scholar
Manneville, P. & Pomeau, Y. 1979, Phys. Lett. A, 75, 1.CrossRefGoogle Scholar
Melrose, D. B. 1991, Ann. Rev. Astron. Astrophy., 11, 227.Google Scholar
Melrose, D.B. 1994, Space Sci. Rev., 68, 159.CrossRefGoogle Scholar
Wu, C. S. & Lee, L. C. 1979, ApJ, 230, 621.CrossRefGoogle Scholar