Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-12T20:04:12.916Z Has data issue: false hasContentIssue false

Axions in the Universe

Published online by Cambridge University Press:  19 July 2016

S. Tsuruta
Affiliation:
(*) Department of Physics, Montana State University
K. Nomoto
Affiliation:
(**) Department of Earth Science and Astronomy, University of Tokyo, and Department of Physics, Brookhaven National Laboratory

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The observational evidence for the presence of dark matter is now generally accepted, with no lack of possible candidates (see e.g. Dekel, Einasto, and Rees 1986). The proposed candidates are devided into two groups, baryonic and non-baryonic. The latter is further devided to hot and cold dark matter. For the cold dark matter, among the first to be proposed is the axion. In this paper we shall not dwell on numerous cold dark matter candidates offered by particle physicists, for there are review articles on the subject (see e.g. Turner 1986, Primack 1986). The main purpose of the present report is to suggest that neutron star cooling theory and future space satellite programs (e.g. AXAF, XAO, LXAO) have a potential for offering the best astrophysical constraint on the axion mass and hence, giving valuable insight to some cosmological problems.

Type
Chapter XII: Dark Matter
Copyright
Copyright © Reidel 1987 

References

Dearborn, D.S.P., Schramm, D.N., and Steigman, G.: 1986, Phys. Rev. Lett. 56, 26.CrossRefGoogle Scholar
Dekel, A., Einasto, J., and Rees, M.: 1986, Rev. Mod. Phys., in press.Google Scholar
Friedman, B., and Pandharipande, V.R.: 1981, Nucl. Phys. A361, 502.Google Scholar
Fukugita, M., Watamura, S., and Yoshimura, M.: 1982, Phys. Rev. Lett. 48, 1522.Google Scholar
Giacconi, R. et al.: 1979, Astrophys. J. Lett. 230, 540.Google Scholar
Iwamoto, N.: 1984, Phys. Rev. Lett. 53, 1198.CrossRefGoogle Scholar
Itoh, N., et al. 1986: Private Communication.Google Scholar
Kaplan, D.N.: 1985, Nucl. Phys. B260, 215.Google Scholar
Kim, J.E.: 1979, Phys. Rev. Lett. 43, 10.Google Scholar
Kim, J.E.: 1984, Seoul National Univ. Preprint SNUHE-84/02.Google Scholar
Nomoto, K., and Tsuruta, S: 1986, Astrophys. J. Lett. 305, L19.CrossRefGoogle Scholar
Nomoto, K., and Tsuruta, S: 1987, Astrophys. J., Jan. 15, Vol. 312, in press.Google Scholar
Peccei, R.D., and Quinn, H.R.: 1977, Phys. REv. Lett. 38, 1440.Google Scholar
Primack, J.R.: 1986, Preprint SCIPP 86/65.Google Scholar
Raffelt, G.G.: 1986a, , Univ. of München.Google Scholar
Raffelt, G.G.: 1986b, Phys. Rev. D, 33, 897, & Phys. Lett. 166B, 402.Google Scholar
Sato, K., and Sato, H.: 1975, Prog. Theor. Phys. 54, 1564.Google Scholar
Smith, P.F.: 1986: Preprint RAL 86-029.Google Scholar
Tsuruta, S.: 1986, Com. Astrophys. XI, 151.Google Scholar
Tsuruta, S., and Nomoto, K.: 1986, in preperation.Google Scholar
Tuohy, I.R., and Garmire, G.P.: 1980, Astrophys. J. Lett. 239, L107.Google Scholar
Tuohy, I.R., Garmire, G.P., Manchester, R.N., and Dopita, M.A., 1983, Astrophys. J. 268, 778.CrossRefGoogle Scholar
Turner, M.S.: 1986, Preprint.Google Scholar
Weinberg, S.: 1978, Phys. Rev. Lett. 44, 223.Google Scholar
Wilczek, F.: 1978, Phys. Rev. Lett. 40, 279.Google Scholar