Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T02:38:19.606Z Has data issue: false hasContentIssue false

37. Galactic radio emission and the distribution of discrete sources: Introductory Lecture

Published online by Cambridge University Press:  14 August 2015

R. Hanbury Brown*
Affiliation:
Jodrell Bank Experimental Station, University of Manchester, England

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

At wave-lengths greater than about 1 metre the majority of the radio emission which is observed from the Galaxy cannot be explained in terms of thermal emission from ionized interstellar gas. This conclusion is widely accepted and is based on observations of the equivalent temperature of the sky and the spectrum of the radiation. The spectrum at metre wave-lengths is of the general form: where TA is the equivalent black-body temperature of a region of sky and λ is the wave-length. The exponent n varies with direction but lies between about 2·5 and 2·8, and is thus significantly greater than the value of 2·0 which is the maximum to be expected for thermal emission from an ionized gas. Furthermore, the value of TA is about 1050K. at 15 metres and thus greatly exceeds the electron temperature expected in H 11 regions.

At centimetre wave-lengths it is likely that the majority of the radiation observed originates in thermal emission from ionized gas; however, the present discussion is limited to a range of wave-lengths from about 1 to 10 metres where the ionized gas in the Galaxy is believed to be substantially transparent and where the origin of most of the radiation is believed to be non-thermal.

Type
Part III: Galactic Structure and Statistical Studies of Point Sources
Copyright
Copyright © Cambridge University Press 1957 

References

References

1. Reber, G. Ap. J. 100, 279, 1944.CrossRefGoogle Scholar
2. Reber, G. Proc. I.R.E. 36, 1215, 1948.CrossRefGoogle Scholar
3. Hey, J. S., Parsons, S. J. and Phillips, J. W. Proc. Roy. Soc. A , 192, 425, 1948.Google Scholar
4. Bolton, J. G. and Westfold, K. C. Aust. J. Sci. Res. A , 3, 19, 1950.Google Scholar
5. Allen, C. W. and Gum, C. S. Aust. J. Sci. Res. A , 3, 224, 1950.Google Scholar
6. Westerhout, G. and Oort, J. H. B.A.N. 11, 323, no. 426, 1951.Google Scholar
7. Scheuer, P. A. G. and Ryle, M. M.N.R.A.S. 113, 3, 1953.CrossRefGoogle Scholar
8. Shklovsky, I. S. Astr. Zh. 29, 418, 1952.Google Scholar
9. Ryle, M., Smith, F. G. and Elsemore, B. M.N.R.A.S. 110, 508, 1950.CrossRefGoogle Scholar
10. Mills, B. Y. Aust. J. Sci. Res. A , 5, 266, 1952.Google Scholar
11. Hanbury Brown, R. and Hazard, C. M.N.R.A.S. 113, 123, 1953.CrossRefGoogle Scholar
12. Hanbury Brown, R., Palmer, H. P. and Thompson, A. R. Nature , 173, 945, 1954.CrossRefGoogle Scholar
13. Alfvé, H. and Herlofson, N. Phys. Rev. 78, 616, 1950.CrossRefGoogle Scholar
14. Kiepenheuer, K. O. Phys. Rev. 79, 738, 1950.CrossRefGoogle Scholar
15. Ginsburg, V. L. Dok. Akad. Nauk. U.S.S.R. 76, 377, 1951.Google Scholar
16. Hutchinson, G. W. Phil. Mag. 43, 847, 1952.CrossRefGoogle Scholar
17. Hoyle, F. Nature , 173, 483, 1954.CrossRefGoogle Scholar
18. Baade, W. and Minkowski, R. Ap. J. 119, 206, 1954.CrossRefGoogle Scholar
19. Baldwin, J. E. and Dewhirst, D. W. Nature , 173, 164, 1954.CrossRefGoogle Scholar
20. Hanbury Brown, R. and Walsh, D. Nature , 175, 808, 1955.Google Scholar
21. Bolton, J. G. and Stanley, G. J. Aust. J. Sci. Res. A , 2, 139, 1949.Google Scholar
22. Hanbury Brown, R. and Hazard, C. Nature , 170, 364, 1952.CrossRefGoogle Scholar
23. Ryle, M. Observatory , 75, 137, 1955.Google Scholar
24. Shklovsky, I. S. Dok. Acad. Nauk. U.S.S.R. 94, 417, 1954.Google Scholar
25. Hanbury Brown, R. Observatory , 74, 185, 1954.Google Scholar
26. Twiss, R. Q. Phil. Mag. 45, 249, 1954.CrossRefGoogle Scholar
27. Baldwin, J. E. Nature , 174, 320, 1954.CrossRefGoogle Scholar
28. Baade, W. and Minkowski, R. Ap. J. 119, 215, 1954.CrossRefGoogle Scholar
29. Hazard, C. Occasional Notes, Roy. Ast. Soc. 3, 74, 1954.Google Scholar
30. Mills, B. Y. Aust. J. Phys. 8, 368, 1955.CrossRefGoogle Scholar
31. Hanbury Brown, R. and Hazard, C. Phil. Mag. 44, 939, 1953.CrossRefGoogle Scholar

References

1. Scheuer, P. A. G. and Ryle, M. M.N.R.A.S. 113, 3, 1953.CrossRefGoogle Scholar
2. Burbidge, G. Ap. J. 123, 178, 1956.CrossRefGoogle Scholar