Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T04:44:12.807Z Has data issue: false hasContentIssue false

Collision avoidance method for multi-operator multi-robot teleoperation system

Published online by Cambridge University Press:  03 April 2017

S. E. García*
Affiliation:
Instituto de Automática, Universidad Nacional de San Juan, San Juan, Argentina. E-mails: [email protected], [email protected], [email protected]
E. Slawiñski
Affiliation:
Instituto de Automática, Universidad Nacional de San Juan, San Juan, Argentina. E-mails: [email protected], [email protected], [email protected]
V. Mut
Affiliation:
Instituto de Automática, Universidad Nacional de San Juan, San Juan, Argentina. E-mails: [email protected], [email protected], [email protected]
F. Penizzotto
Affiliation:
Instituto de Automática, Universidad Nacional de San Juan, San Juan, Argentina. E-mails: [email protected], [email protected], [email protected]
*
*Corresponding author. E-mail: [email protected]

Summary

This paper proposes a collision avoidance method for the teleoperation of multiple non-holonomic mobile robots from multiple users. Each human operator drives a mobile robot, where each one performs an independent task in a common workspace. To avoid collisions, the proposed method only acts on the speed of the mobile robots; therefore, the human operator can freely drive the robot over the path he chooses to. The developed analysis allows us to assure that a solution is always achieved. Finally, the results of the experiments are shown, in order to test the performance of the proposed control scheme.

Type
Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Slawiski, E., Mut, V., Salinas, L. and García, S., “Teleoperation of a mobile robot with time-varying delay and force feedback,” Robotica 30 (1), 6777, (2012).Google Scholar
2. Slawiñski, E., et al.PD-like controller with impedance for delayed bilateral teleoperation of mobile robots.” Robotica 34 (9), 21512161, (2016).CrossRefGoogle Scholar
3. Penizzotto, F., García, S., Slawiñski, E. and Mut, V., “Delayed bilateral teleoperation of wheeled robots including a command metric,” Math. Probl. Eng. 2015, pp. 13, (2015).Google Scholar
4. Lichiardopol, S., “A survey on teleoperation,” Dept. Mech. Eng., Dynamics Control Group, Technische Universiteit Eindhoven, Eindhoven, Dept., Mech. Eng., Dyn. Control Group, The Netherlands, Tech. Rep. DCT2007, 155 (2007).Google Scholar
5. Fong, T., Thorpe, C. and Baur, C., “Multi-robot remote driving with collaborative control,” IEEE Trans. Ind. Electron. 50 (4), 699704 (2003).Google Scholar
6. Suzuki, T., Sekine, T., Fujii, T., Asama, H. and Endo, I., “Cooperative Formation Among Multiple Mobile Robot Teleoperation in Inspection Task,” Proceedings of the 39th IEEE Conference on Decision and Control, vol. 1 (2000) pp. 358–363.Google Scholar
7. Lee, D. and Spong, M. W., “Bilateral Teleoperation of Multiple Cooperative Robots Over Delayed Communication Networks: Theory,” Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA (2005) pp. 360–365.Google Scholar
8. Lee, D., Martinez-Palafox, O. and Spong, M. W., “Bilateral Teleoperation of Multiple Cooperative Robots Over Delayed Communication Networks: Application,” Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA (2005) pp. 366–371.Google Scholar
9. Rodríguez-Seda, E. J., Troy, J. J., Erignac, C. A., Murray, P., Stipanovic, D. M. and Spong, M. W., “Bilateral teleoperation of multiple mobile agents: Coordinated motion and collision avoidance,” IEEE Trans. Control Syst. Technol. 18 (4), 984992 (2010).CrossRefGoogle Scholar
10. Ohba, K., Kawabata, S., Chong, N. Y., Komoriya, K., Matsumaru, T., Matsuhira, N., Takase, K. and Tanie, K., “Remote Collaboration through Time Delay in Multiple Teleoperation,” Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS’ 99, vol. 3 (1999) pp. 1866–1871.Google Scholar
11. Chong, N. Young, Kotoku, T., Ohba, K., Komoriya, K., Matsuhira, N. and Tanie, K., “Remote Coordinated Controls in Multiple Telerobot Cooperation,” Proceedings of the IEEE International Conference on Robotics and Automation, ICRA’00, vol. 4 (2000) pp. 3138–3143.Google Scholar
12. Chong, N. Young, Kawabata, S., Ohba, K., Kotoku, T., Komoriya, K., Takase, K. and Tanie, K., “Multioperator teleoperation of multirobot systems with time delay: Part i. Aids for collision-free control,” Presence: Teleoperators Virtual Environ. 11 (3), 277291 (2002).CrossRefGoogle Scholar
13. Chong, N. Young, Kotoku, T., Ohba, K., Sasaki, H., Komoriya, K. and Tanie, K., “Multioperator teleoperation of multirobot systems with time delay: Part ii. Testbed description,” Presence: Teleoperators Virtual Environ. 11 (3), 292303 (2002).Google Scholar
14. Elhaji, I., Tan, J., Xi, N., Fung, W. K., Liu, Y. H., Kaga, T., Hasegawa, Y. and Fukuda, T., “Multi-Site Internet-Based Cooperative Control of Robotic Operations,” Proceedings of 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000.(IROS 2000), vol. 2 (2000) pp. 826–831.Google Scholar
15. Elhaji, I., Xi, N., Fung, W. K., Liu, Y. H., Hasegawa, Y. and Fukuda, T., “Modeling and Control of Internet Based Cooperative Teleoperation,” Proceedings of the IEEE International Conference on Robotics and Automation, ICRA, vol. 1 (2001) pp. 662–667.Google Scholar
16. Wang-tai, L., Yunhui, L., Elhajj, I. H., Xi, N., Wang, Y. and Fukuda, T., “Cooperative teleoperation of a multirobot system with force reflection via internet,” IEEE/ASME Trans. Mechatron. 9 (4), 661670 (2004).Google Scholar
17. Sirouspour, S. and Setoodeh, P., “Multi-Operator/Multi-Robot Teleoperation: An Adaptive Nonlinear Control Approach,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005) (2005) pp. 1576–1581.Google Scholar
18. Passenberg, C., Peer, A. and Buss, M., “Model-Mediated Teleoperation for Multi-Operator Multi-Robot Systems,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2010) pp. 4263–4268.Google Scholar
19. Van den Berg, J., Guy, S. J., Lin, M. C. and Manocha, D., “Reciprocal n-Body Collision Avoidance,” Proceedings of the International Symposium on Robotics Research (2009).Google Scholar
20. Alonso-Mora, J., Breitenmoser, A., Rufli, M., Beardsley, P. and Siegwart, R., “Optimal Reciprocal Collision Avoidance for Multiple Non-Holonomic Robots,” Proceedings of the 10th International Symposium on Distributed Autonomous Robotic Systems (DARS), Berlin, Springer Press (Nov. 2010).Google Scholar
21. Slawinski, E. and Mut, V., “Transparency in Time for Teleoperation Systems,” Proceedings of the IEEE International Conference on Robotics and Automation, ICRA (2008) pp. 200–205.Google Scholar
22. Slawinski, E., Mut, V. A., Fiorini, P. and Salinas, L. R., “Quantitative absolute transparency for bilateral teleoperation of mobile robots,” IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 42 (2), 430442 (2012).Google Scholar
23. Bareiss, D. and van den Berg, J., “Reciprocal Collision Avoidance for Robots with Linear Dynamics using LQR-Obstacles,” Proceedings of the IEEE International Conference Robotics and Automation (2013).Google Scholar
24. Conroy, P., Bareiss, D., Beall, M. and van den Berg, J., “3-D Reciprocal Collision Avoidance on Physical Quadrotor Helicopters with On-Board Sensing for Relative Positioning,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2013), (2013).Google Scholar
25. Yang, X., Alvarez, L. M. and Bruggemann, T., “A 3D collision avoidance strategy for UAVs in a non-cooperative environment,” J. Intell. Robot. Syst. 70 (1–4), 315327 (2013).Google Scholar
26. Fiorini, P. and Shiller, Z., “Motion planning in dynamic environments using velocity obstacles,” Int. J. Robot. Res. 17 (7), 760772 (1998).Google Scholar

García supplementary material S1

Supplementary Video

Download García supplementary material S1(Video)
Video 40.6 MB

García supplementary material S2

Supplementary Video

Download García supplementary material S2(Video)
Video 30.9 MB