Article contents
Simulated Last Glacial Maximum Δ14Catm and the Deep Glacial Ocean Carbon Reservoir
Published online by Cambridge University Press: 09 February 2016
Abstract
Δ14Catm has been estimated as 420 ± 80% (IntCal09) during the Last Glacial Maximum (LGM) compared to preindustrial times (0%), but mechanisms explaining this difference are not yet resolved. Δ14Catm is a function of both cosmogenic production in the high atmosphere and of carbon cycling and partitioning in the Earth system. 10Be-based reconstructions show a contribution of the cosmogenic production term of only 200 ± 200% in the LGM. The remaining 220% have thus to be explained by changes in the carbon cycle. Recently, Bouttes et al. (2010, 2011) proposed to explain most of the difference in pCO2atm and Δ13C between glacial and interglacial times as a result of brine-induced ocean stratification in the Southern Ocean. This mechanism involves the formation of very saline water masses that contribute to high carbon storage in the deep ocean. During glacial times, the sinking of brines is enhanced and more carbon is stored in the deep ocean, lowering pCO2atm. Moreover, the sinking of brines induces increased stratification in the Southern Ocean, which keeps the deep ocean well isolated from the surface. Such an isolated ocean reservoir would be characterized by a low Δ14C signature. Evidence of such 14C-depleted deep waters during the LGM has recently been found in the Southern Ocean (Skinner et al. 2010). The degassing of this carbon with low Δ14C would then reduce Δ14Catm throughout the deglaciation. We have further developed the CLIMBER-2 model to include a cosmogenic production of 14C as well as an interactive atmospheric 14C reservoir. We investigate the role of both the sinking of brine and cosmogenic production, alongside iron fertilization mechanisms, to explain changes in Δ14Catm during the last deglaciation. In our simulations, not only is the sinking of brine mechanism consistent with past Δ14C data, but it also explains most of the differences in pCO2atm and Δ14Catm between the LGM and preindustrial times. Finally, this study represents the first time to our knowledge that a model experiment explains glacial-interglacial differences in pCO2atm, Δ13C, and Δ14C together with a coherent LGM climate.
- Type
- Oceanic Carbon Cycle
- Information
- Radiocarbon , Volume 55 , Issue 3: Proceedings of the 21st International Radiocarbon Conference (Part 2 of 2) , 2013 , pp. 1595 - 1602
- Copyright
- Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona
References
- 6
- Cited by