Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T05:11:41.508Z Has data issue: false hasContentIssue false

Dating the Lascaux Cave Gour Formation

Published online by Cambridge University Press:  18 July 2016

D Genty*
Affiliation:
LSCE, UMR CEA/CNRS/UVSQ 8212, L'Orme des Merisiers CEA Saclay, 91191 Gif sur Yvette Cedex, France.
S Konik
Affiliation:
Centre National de Préhistoire, 38 rue du 26e Régiment d'Infanterie, 24000 Périgueux, France. Also: PACEA UMR 5199 CNRS, France.
H Valladas
Affiliation:
LSCE, UMR CEA/CNRS/UVSQ 8212, Avenue de la Terrasse, 91191 Gif sur Yvette Cedex, France.
D Blamart
Affiliation:
LSCE, UMR CEA/CNRS/UVSQ 8212, Avenue de la Terrasse, 91191 Gif sur Yvette Cedex, France.
J Hellstrom
Affiliation:
School of Earth Sciences, University of Melbourne, VIC 3010, Australia.
M Touma
Affiliation:
LSCE, UMR CEA/CNRS/UVSQ 8212, L'Orme des Merisiers CEA Saclay, 91191 Gif sur Yvette Cedex, France.
C Moreau
Affiliation:
Laboratoire de Mesure du Carbone 14, UMS 2572 bâtiment 450 porte 4, CEA Saclay, 91191 Gif sur Yvette Cedex, France.
J-P Dumoulin
Affiliation:
Laboratoire de Mesure du Carbone 14, UMS 2572 bâtiment 450 porte 4, CEA Saclay, 91191 Gif sur Yvette Cedex, France.
J Nouet
Affiliation:
IDES, UMR 8148, Université de Paris XI, 91405 Orsay Cedex, France.
Y Dauphin
Affiliation:
IDES, UMR 8148, Université de Paris XI, 91405 Orsay Cedex, France.
R Weil
Affiliation:
LPS, UMR 8502, Université de Paris XI, 91405 Orsay, France.
*
Corresponding author. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Lascaux Cave is renowned for its outstanding prehistoric paintings, strikingly well-preserved over about 18,000 yr. While stalagmites and stalactites are almost absent in the cave, there is an extensive calcite flowstone that covered a large part of the cave until its opening for tourists during the 1950s. The deposit comprises a succession of calcite rims, or “gours,” which allowed seepage water to pond in large areas in the cave. Their possible role in preservation of the cave paintings has often been evoked, but until now this deposit has not been studied in detail. Here, we present 24 new radiocarbon accelerator mass spectrometry (AMS) and 6 uranium-thorium (U-Th) analyses from the calcite of the gours, 4 AMS 14C dates from charcoals trapped in the calcite, and 4 AMS 14C analyses on organic matter extracted from the calcite. Combining the calibrated 14C ages obtained on charcoals and organic matter and U-Th ages from 14C analyses made on the carbonate, has allowed the calculation of the dead carbon proportion (dcp) of the carbonate deposits. The latter, used with the initial atmospheric 14C activities reconstructed with the new IntCal09 calibration data, allows high-resolution age estimation of the gour calcite samples and their growth rates. The carbonate deposit grew between 9530 and 6635 yr cal BP (for dcp = 10.7 ± 1.8%; 2 σ) or between 8518 and 5489 yr cal BP (for dcp = 20.5 ± 1.9%; 2 σ). This coincides with humid periods that can be related to the Atlantic period in Europe and to Sapropel 1 in the eastern Mediterranean Sea. However, geomorphological changes at the cave entrance might also have played a role in the gour development. In the 1940s, when humans entered the cave for the first time since its prehistoric occupation, the calcite gours had already been inactive for several thousand years.

Type
Articles
Copyright
Copyright © 2011 The Arizona Board of Regents on behalf of the University of Arizona 

References

Aujoulat, N. 2004. Lascaux. Le geste, I'espace et le temps. Paris: Seuil.Google Scholar
Arnold, JR, Libby, WF. 1951. Radiocarbon dates. Science 113(2927):111–20.CrossRefGoogle ScholarPubMed
Bar-Matthews, M, Ayalon, A, Kaufman, A. 2000. Timing and hydrological conditions of Sapropel events in the eastern Mediterranean, as evident from speleothems, Soreq cave, Israel. Chemical Geology 169(1–2):145–56.Google Scholar
Bastian, F, Alabouvette, C. 2009. Lights and shadows on the conservation of a rock art cave: the case of Lascaux Cave. International Journal of Speleology 38(1–2):5560.Google Scholar
Bastian, F, Orial, G, Francois, A, Alabouvette, C. 2007. The Lascaux cave. A complex ecosystem where bacteria and fungus interact. Biofutur 283:2831.Google Scholar
Bastian, F, Alabouvette, C, Saiz-Jimenez, C. 2009. The impact of arthropods on fungal community structure in Lascaux Cave. Journal of Applied Microbiology 106(5):1456–62.CrossRefGoogle ScholarPubMed
Bastian, F, Jurado, V, Novakova, A, Alabouvette, C, Saiz-Jimenez, C. 2010. The microbiology of Lascaux Cave. Microbiology 156(3):644–52.Google Scholar
Berrouet, F. 2009. Les altérations d'origine biologique dans l'art pariétal: exemple des relations structurales et conceptuelles entre le mondmilch et les représentations paléolithiques. Bordeaux: University of Bordeaux 1. 280 p.Google Scholar
Billy, C, Blanc, P. 1977. Application du MEB à la cristallogenèse bactérienne d'aragonite et de calcite. Travaux du Laboratoire de Micropaléotologie 7:171–86.Google Scholar
Billy, C, Chalvignac, MA. 1976. Role of biological factors in calcification of caves of Lascaux and Font-De-Gaume. Comptes Rendus Hebdomadaires des Seances de L'Academie des Sciences Serie D 283(2):207–9.Google Scholar
Borsato, A, Frisia, S, Jones, B, Van der Borg, K. 2000. Calcite moonmilk: crystal morphology and environment of formation in caves in the Italian Alps. Journal of Sedimentary Research 70(5):1171–82.Google Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–30.CrossRefGoogle Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43(2A):355–63.Google Scholar
Casanova, J. 1981. Morphologie et biolithogénèse des barrages de travertins. Mémoire de l'Association Française de Karstologie 3:4554.Google Scholar
Chase, BM, Meadows, ME, Carr, AS, Reimer, PJ. 2010. Evidence for progressive Holocene aridification in southern Africa recorded in Namibian hyrax middens: implications for African Monsoon dynamics and the “African Humid Period.” Quaternary Research 74(1):3645.CrossRefGoogle Scholar
Cheng, H, Edwards, RL, Hoff, J, Gallup, CD, Richards, DA, Asmerom, Y. 2000. The half-lives of uranium-234 and thorium-230. Chemical Geology 169:1733.Google Scholar
Cui, JX, Zhou, SZ, Chang, H. 2009. The Holocene warm-humid phases in the North China Plain as recorded by multi-proxy records. Chinese Journal of Oceanology and Limnology 27(1):147–61.Google Scholar
Delibrias, G, Guillier, MT, Labeyrie, J. 1964. Saclay natural radiocarbon measurements I. Radiocarbon 6:233–50.Google Scholar
Delluc, B, Delluc, G. 2003. Lascaux retrouvé. Périgueux: Pilote 24. 364 p.Google Scholar
Delluc, B, Delluc, G. 2008. Dictionnaire de Lascaux. Paris: Editions Sud-Ouest. 349 p.Google Scholar
Dykoski, CA, Edwards, RL, Cheng, H, Yuan, D, Cai, Y, Zhang, M, Lin, Y, Qing, J, An, ZS, Revenaugh, J. 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters 233(1–2):7186.Google Scholar
Fleitmann, D, Burns, SJ, Neff, U, Mangini, A, Matter, A. 2003. Changing moisture sources over the last 330,000 years in Northern Oman from fluid-inclusion evidence in speleothems. Quaternary Research 60(2):223–32.Google Scholar
Fletcher, WJ, Goni, MFS, Peyron, O, Dormoy, I. 2010. Abrupt climate changes of the last deglaciation detected in a Western Mediterranean forest record. Climate of the Past 6(2):245–64.Google Scholar
Frisia, S, Borsato, A, Fairchild, IJ, McDermott, F. 2000. Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and southwestern Ireland. Journal of Sedimentary Research 70(5):1183–96.Google Scholar
Frisia, S, Borsato, A, Spotl, C, Villa, IM, Cucchi, F. 2005. Climate variability in the SE Alps of Italy over the past 17 000 years reconstructed from a stalagmite record. Boreas 34(4):445–55.Google Scholar
Genty, D, Quinif, Y. 1996. Annually laminated sequences in the internal structure of some Belgian stalagmites - importance for paleoclimatology. Journal of Sedimentary Research 66(1):275–88.Google Scholar
Genty, D, Massault, M, Gilmour, M, Baker, A, Verheyden, S, Kepens, E. 1999. Calculation of past dead carbon proportion and variability by the comparison of AMS 14C and TIMS U/Th ages on two Holocene stalagmites. Radiocarbon 41(3):251–70.Google Scholar
Genty, D, Baker, A, Massault, M, Proctor, C, Gilmour, M, Pons-Branchu, E, Hamelin, B. 2001. Dead carbon in stalagmites: carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implication for 13C variation in speleothems. Geochimica et Cosmochimica Acta 65(20):3443–57.Google Scholar
Genty, D, Blamart, D, Ghaleb, B, Plagnes, V, Causse, C, Bakalowicz, M, Zouari, K, Chkir, N, Hellstrom, J, Wainer, K, Bourges, F. 2006. Timing and dynamics of the last deglaciation from European and North African δ13C stalagmite profiles–comparison with Chinese and South Hemisphere stalagmites. Quaternary Science Reviews 25(17–18):2118–42.Google Scholar
Glory, A. 1964. Datation des peintures de Lascaux par le radio-carbone. Bulletin de la Société Préhistorique Française 5:CXIVCXVII.Google Scholar
Glory, A, Delluc, B, Delluc, G. 2008. Les recherches à Lascaux (1952–1963). Gallia Préhistoire XXXIX:201.Google Scholar
Guyon, PM. 1980. La conservation des peintures pariétales. Contribution aux travaux de la Commission scientifique de Lascaux. Revue de Synthèse III(97–98):115–44.Google Scholar
Hellstrom, J. 2003. Rapid and accurate U/Th dating using parallel ion-counting multi-collector ICP-MS. Journal of Analytical Atomic Spectrometry 18(11):1346–51.Google Scholar
Hellstrom, J. 2006. U-Th dating of speleothems with high initial 230Th using stratigraphical constraint. Quaternary Geochronology 1(4):289–95.Google Scholar
Huang, JB, Wang, SW, Wen, XY, Yang, B. 2008. Progress in studies of the climate of humid period and the impacts of changing precession in early-mid Holocene. Progress in Natural Science 18(12):1459–64.Google Scholar
Ivory, SJ, Lezine, AM. 2009. Climate and environmental change at the end of the Holocene Humid Period: a pollen record off Pakistan. Comptes Rendus Geoscience 341(8–9):760–9.Google Scholar
Lacanette, D, Vincent, S, Sarthou, A, Malaurent, P, Caltagirone, JP. 2009. An Eulerian/Lagrangian method for the numerical simulation of incompressible convection flows interacting with complex obstacles: application to the natural convection in the Lascaux cave. International Journal of Heat and Mass Transfer 52(11–12):2528–42.Google Scholar
Leroi-Gourhan, A, Allain, J. 1979. Lascaux Inconnu. XIIe supplément à Gallia Préhistoire. Paris: CNRS. 379 p.Google Scholar
Leroi-Gourhan, A, Evin, J. 1979. Les datations de Lascaux. In: Lascaux Inconnu. Paris: CNRS. p 81–4.Google Scholar
Luetscher, M, Jeannin, PY. 2004. Temperature distribution in karst systems: the role of air and water fluxes. Terra Nova 16(6):344–50.Google Scholar
Lezine, AM, Tiercelin, JJ, Robert, C, Saliege, JF, Cleuziou, S, Inizan, ML, Braemer, F. 2007. Centennial to millennial-scale variability of the Indian monsoon during the early Holocene from a sediment, pollen and isotope record from the desert of Yemen. Palaeogeography, Palaeoclimatology, Palaeoecology 243(3–4):235–49.CrossRefGoogle Scholar
Libby, WF. 1952. Radiocarbon Dating. Chicago: University of Chicago Press.Google Scholar
Magny, M, Bégeot, C. 2004. Hydrological changes in the European midlatitudes associated with freshwater outbursts from Lake Agassiz during the Younger Dryas event and the early Holocene. Quaternary Research 61(2):181–92.Google Scholar
Mook, WG, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41(3):227–39.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.Google Scholar
Renssen, H, Isarin, RFB, Jacob, D, Podzun, R, Vandenberghe, J. 2001. Simulation of the Younger Dryas climate in Europe using a regional climate model nested in an AGCM: preliminary results. Global and Planetary Change 30(1–2):4157.Google Scholar
Taine, J, Lacona, E, Petit, JP. 2003. Transferts thermiques, introduction aux transferts d'énergie. Paris: Dunod.Google Scholar
Vogel, JC, Waterbolk, HT. 1963. Groningen radiocarbon dates IV. Radiocarbon 5:163202.CrossRefGoogle Scholar
Vouvé, J. 1979. Etude géologique et genèse hydrokarstique. In: Lascaux Inconnu. Paris: CNRS. p 35–9.Google Scholar
Watrin, J, Lezine, AM, Hely, C. 2009. Plant migration and plant communities at the time of the “green Sahara.” Comptes Rendus Geoscience 341(8–9):656–70.Google Scholar
Zanchetta, G, Drysdale, RN, Hellstrom, JC, Fallick, AE, Isola, I, Gagan, MK, Pareschi, MT. 2007. Enhanced rainfall in the Western Mediterranean during deposition of sapropel S1: stalagmite evidence from Corchia cave (Central Italy). Quaternary Science Reviews 26(3–4):279–86.CrossRefGoogle Scholar