Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T07:45:15.911Z Has data issue: false hasContentIssue false

A Bayesian Framework for Age Modeling of Radiocarbon-Dated Peat Deposits: Case Studies from the Netherlands

Published online by Cambridge University Press:  18 July 2016

Maarten Blaauw*
Affiliation:
Centre for Mathematical Research (CIMAT), A.P. 402, 36000 Guanajuato, Mexico
Ronald Bakker
Affiliation:
Heesterlaan 6, 9713 NW Groningen, the Netherlands
J Andres Christen
Affiliation:
Centre for Mathematical Research (CIMAT), A.P. 402, 36000 Guanajuato, Mexico
Valerie A Hall
Affiliation:
School of Geography, Archaeology and Palaeoecology, Queen's University, Belfast BT71NN, Northern Ireland
Johannes van der Plicht
Affiliation:
Centre for Isotope Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands. Also: Faculty of Archaeology, Leiden University, P.O. Box 9515, 2300 RA Leiden, the Netherlands
*
Corresponding author. Email: [email protected]. Presently at Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala, Sweden. Currently on leave at School of Geography, Archaeology and Palaeoecology, Queen's University, Belfast BT71NN, Northern Ireland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recently, Bayesian statistical software has been developed for age-depth modeling (“wiggle-match dating”) of sequences of densely spaced radiocarbon dates from peat cores. The method is described in non-statistical terms, and is compared with an alternative method of chronological ordering of 14C dates. Case studies include the dating of the start of agriculture in the northeastern part of the Netherlands, and of a possible Hekla-3 tephra layer in the same country. We discuss future enhancements in Bayesian age modeling.

Type
Articles
Copyright
Copyright © 2007 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Bakker, R. 2003a. The emergence of agriculture on the Drenthe Plateau—a palaeobotanical study supported by high-resolution 14C dating [PhD dissertation]. Groningen University, the Netherlands. Archäologische Berichte 16. Bonn. 305 p.Google Scholar
Bakker, R. 2003b. The process of Neolithization in the Pleistocene areas near the North Sea coast—evidence for early farming by the Swifterbant culture around 4000 cal BC. Archäologische Informationen 26:333–69.Google Scholar
Belyea, LW, Clymo, RS. 2001. Feedback control of the rate of peat formation. Proceedings of the Royal Society of London: Biological Sciences 268(1473):1315–21.Google Scholar
Bergman, J, Wastegård, S, Hammarlund, D, Wohlfarth, B, Roberts, SJ. 2004. Holocene tephra horizons at Klocka Bog, west-central Sweden: aspects of reproducibility in subarctic peat deposits. Journal of Quaternary Science 19(3):241–9.Google Scholar
Blaauw, M. 2003. An investigation of Holocene sun-climate relationships using numerical 14C wiggle-match dating of peat deposits [PhD dissertation]. University of Amsterdam, the Netherlands.Google Scholar
Blaauw, M, Heuvelink, GBM, Mauquoy, D, van der Plicht, J, van Geel, B. 2003. A numerical approach to 14C wiggle-match dating of organic deposits: best fits and confidence intervals. Quaternary Science Reviews 22(14): 1485–500.Google Scholar
Blaauw, M, van Geel, B, Mauquoy, D, van der Plicht, J. 2004. Carbon-14 wiggle-match dating of peat deposits: advantages and limitations. Journal of Quaternary Science 19(2):177–81.Google Scholar
Blaauw, M, Christen, JA. 2005. Radiocarbon peat chronologies and environmental change. Applied Statistics 54(4):805–16.Google Scholar
Blaauw, M, Christen, JA, Guilderson, TP, Reimer, PJ, Brown, TA. 2005. The problems of radiocarbon dating [Letters to the Editor]. Science 308(5728):1551–3.CrossRefGoogle ScholarPubMed
Blockley, SPE, Blaauw, M, Bronk Ramsey, C, van der Plicht, J. Forthcoming. Building and testing age models for radiocarbon dates in Lateglacial and Early Holocene sediments. Quaternary Science Reviews. Google Scholar
Boygle, J. 1999. Variability of tephra in lake and catchment sediments, Svínavatn, Iceland. Global and Planetary Change 21(1–3): 129–49.Google Scholar
Boygle, J. 2004. Towards a Holocene tephrochronology for Sweden: geochemistry and correlation with the North Atlantic tephra stratigraphy. Journal of Quaternary Science 19(2):103–9.Google Scholar
Bronk Ramsey, C, van der Plicht, J, Weninger, B. 2001. “Wiggle matching” radiocarbon dates. Radiocarbon 43(2A):381–9.Google Scholar
Bronk Ramsey, C. Forthcoming. Deposition models for chronological records. Quaternary Science Reviews. Google Scholar
Buck, CJ, Christen, JA, James, GN. 1999. BCal: an on-line Bayesian radiocarbon calibration tool. Internet Archaeology 7. http://intarch.ac.uk/journal/issue7/buck_toc.html.Google Scholar
Buck, CJ, Higham, TFG, Lowe, DJ. 2003. Bayesian tools for tephrochronology. The Holocene 13(5):639–47.Google Scholar
Casparie, WA, Groenman-van Waateringe, W. 1980. Palynological analysis of Dutch barrows. Palaeohistoria 22:765.Google Scholar
Charman, DJ, Garnett, MH. 2005. Chronologies for recent peat deposits using wiggle-matched radiocarbon ages: problems with old carbon contamination. Radiocarbon 47(1):135–45.Google Scholar
Christen, JA. 1994a. Bayesian interpretation of radiocarbon results [PhD dissertation]. University of Nottingham, United Kingdom.Google Scholar
Christen, JA. 1994b. Summarizing a set of radiocarbon determinations: a robust approach. Applied Statistics 43(3):489503.Google Scholar
Christen, JA, Clymo, RS, Litton, CD. 1995. A Bayesian approach to the use of 14C dates in the estimation of the age of peat. Radiocarbon 37(2):431–42.Google Scholar
Christen, JA. 2003. Bwigg: an Internet facility for Bayesian radiocarbon wiggle-matching. Internet Archaeology 7. http://intarch.ac.uk/journal/issue13/christen_index.html.Google Scholar
Clymo, RS, Oldfield, F, Appleby, PG, Pearson, GW, Ratnesar, P, Richardson, N. 1990. The record of atmospheric deposition on a rainwater-dependent peatland. Philosophical Transactions of the Royal Society of London B 327:331–8.Google Scholar
Donders, TH, Wagner, F, van der Borg, K, de Jong, AFM, Visscher, H. 2004. A novel approach for developing high-resolution sub-fossil peat chronologies with 14C dating. Radiocarbon 46(1):455–63.Google Scholar
Eiríksson, J, Knudsen, KL, Haflidason, H, Heinemeier, J. 2000. Chronology of late Holocene climatic events in the northern North Atlantic based on AMS 14C dates and tephra markers from the volcano Hekla, Iceland. Journal of Quaternary Science 15(6):573–80.Google Scholar
Friedrich, WL, Kromer, B, Friedrich, M, Heinemeier, J, Pfeiffer, T, Talamo, S. 2006. Santorini eruption radiocarbon dated to 1627–1600 B.C. Science 312(5773):548.Google Scholar
Garnett, MH, Stevenson, AC. 2004. Testing the use of bomb radiocarbon to date the surface layers of blanket peat. Radiocarbon 46(2):841–51.Google Scholar
Guilderson, TP, Reimer, PJ, Brown, TA. 2005. The boon and bane of radiocarbon dating. Science 307(5708):362–4.CrossRefGoogle Scholar
Gulliksen, S, Birks, HH, Possnert, G, Mangerud, J. 1998. A calendar age estimate of the Younger Dryas-Holocene boundary at Kråkenes, western Norway. The Holocene 8(3):249–59.Google Scholar
Haflidason, H, Eiríksson, J, van Kreveld, S. 2000. The tephrochronology of Iceland and the North Atlantic region during the Middle and Late Quaternary: a review. Journal of Quaternary Science 15(1):322.Google Scholar
Hogg, AG, Higham, TFG, Lowe, DJ, Palmer, JG, Reimer, PJ, Newnham, RW. 2003. A wiggle-match date for Polynesian settlement of New Zealand. Antiquity 77(295): 116–25.Google Scholar
Kilian, MR, van der Plicht, J, van Geel, B. 1995. Dating raised bogs: new aspects of AMS 14C wiggle matching, a reservoir effect and climatic change. Quaternary Science Reviews 14(1):959–66.Google Scholar
Kilian, MR, van Geel, B, van der Plicht, J. 2000. 14C AMS wiggle matching of raised bog deposits and models of peat accumulation. Quaternary Science Reviews 19(10):1011–33.Google Scholar
Kuzmin, YV, Slusarenko, IY, Hajdas, I, Bonani, G, Christen, JA. 2004. The comparison of 14C wiggle-matching results for the “floating” tree-ring chronology of the Ulandrik-4 burial ground (Altai Mountains, Siberia). Radiocarbon 46(2):943–8.CrossRefGoogle Scholar
Mauquoy, D, van Geel, B, Blaauw, M, van der Plicht, J. 2002. Evidence from northwest European bogs shows ‘Little Ice Age’ climatic changes driven by variations in solar activity. The Holocene 12(1):16.Google Scholar
Mauquoy, D, Blaauw, M, van Geel, B, Borromei, A, Quattrocchio, M, Chambers, FM, Possnert, G. 2004. Late Holocene climatic changes in Tierra del Fuego based on multiproxy analyses of peat deposits. Quaternary Research 61(2):148–58.Google Scholar
Norström, E, Holmgren, K, Mörth, C-M. 2005. Rainfall-driven variations in δ13C composition and wood anatomy of Breonadia salicina trees from South Africa between AD 1375 and 1995. South African Journal of Science 101:162–8.Google Scholar
Oldfield, F, Thompson, R, Crooks, PRJ, Gedye, SJ, Hall, VA, Harkness, DD, Housley, RA, McCormac, FG, Newton, AJ, Pilcher, JR, Renberg, I, Richardson, N. 1997. Radiocarbon dating of a recent high-latitude peat profile: Stor Åmyrân, northern Sweden. The Holocene 7(3):283–90.Google Scholar
Pearson, GW. 1986. Precise calendrical dating of known growth-period samples using a ‘curve fitting’ technique. Radiocarbon 28(2A):292–9.Google Scholar
Pilcher, JR, Hall, VA. 1992. Towards a tephrochronology for the Holocene of the north of Ireland. The Holocene 2(3):255–9.Google Scholar
Plunkett, G. 2006. Tephra-linked peat humification records from Irish ombrotrophic bogs question nature of solar forcing at 850 cal yr BC. Journal of Quaternary Science 21(1):916.Google Scholar
Raemaekers, DCM. 1999. The articulation of a ‘New Neolithic.’ The meaning of the Swifterbant culture for the process of neolithisation in the western part of the North European Plain (4900–3400 BC) [PhD dissertation]. University of Leiden. Archaeological Studies Leiden University 3. Leiden.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Slusarenko, IY, Christen, JA, Orlova, LA, Kuzmin, YV, Buur, GS. 2001. 14C wiggle matching of the ‘floating’ tree-ring chronology from the Altai Mountains, southern Siberia: the Ulandryk-4 case study. Radiocarbon 43(2A):425–31.Google Scholar
Speranza, A, van der Plicht, J, van Geel, B. 2000. Improving the time control of the Subboreal/Subatlantic transition in a Czech peat sequence by 14C wiggle-matching. Quaternary Science Reviews 19(16):1589–604.Google Scholar
van de Plassche, O, Edwards, RJ, van der Borg, K, de Jong, AFM. 2002. 14C wiggle-match dating in high-resolution sea-level research. Radiocarbon 43(2A):391402.Google Scholar
van de Plassche, O, van der Schrier, G, Weber, SL, Gehrels, WR, Wright, AJ. 2003. Sea-level variability in the northwest Atlantic during the past 1500 years: a delayed response to solar forcing? Geophysical Research Utters 30(18):1921–4.Google Scholar
van den Bogaard, C, Dörfler, W, Glos, R, Nadeau, M-J, Grootes, PM, Erlenkeuser, H. 2002. Two tephra layers bracketing late Holocene paleoecological changes in northern Germany. Quaternary Research 57(3):314–24.Google Scholar
van Geel, B, Mook, WG. 1989. High-resolution 14C dating of organic deposits using natural atmospheric 14C variations. Radiocarbon 31(2):151–5.Google Scholar
van Zeist, W. 1959. Studies on the post-Boreal vegetation of south-eastern Drenthe (Netherlands). Acta Botanica Neerlandica 8:156–85.Google Scholar
van Zeist, W. 1967. Archaeology and palynology in the Netherlands. Review of Palaeobotany and Palynology 4:4565.Google Scholar
Vorren, K-D, Blaauw, M, Wastegård, S, van der Plicht, J, Jensen, C. 2007. High-resolution stratigraphy of the northernmost concentric raised bog in Europe: Sellevollmyra, Andøya, northern Norway. Boreas 36(3):253–77.Google Scholar
Wastegård, S. 2005. Late Quaternary tephrochronology of Sweden: a review. Quaternary International 130(1):4962.Google Scholar
Wohlfarth, B, Blaauw, M, Davies, SM, Andersson, M, Wastegård, S, Hormes, A, Possnert, G. 2006. Constraining the age of Lateglacial and early Holocene pollen zones and tephra horizons in southern Sweden with Bayesian probability methods. Journal of Quaternary Science 21(4):321–34.Google Scholar
Yeloff, D, Bennett, KD, Blaauw, M, Mauquoy, D, Sillasoo, Ü, van der Plicht, J, van Geel, B. 2006. High precision 14C dating of Holocene peat deposits: a comparison of Bayesian calibration and wiggle-matching approaches. Quaternary Geochronology 1:222–35.Google Scholar
Zillén, LM, Wastegård, S, Snowball, IF. 2002. Calendar year ages of three mid-Holocene tephra layers identified in varved lake sediments in west central Sweden. Quaternary Science Reviews 21(14–15):1583–91.Google Scholar