Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-14T13:25:23.090Z Has data issue: false hasContentIssue false

Suitability of biogenic carbonate of Lithospermum fruits for 14C dating

Published online by Cambridge University Press:  20 January 2017

Konstantin Pustovoytov*
Affiliation:
Institut für Bodenkunde und Standortlehre, Universität Hohenheim, Emil-Wolff-Str. 27, 70599 Stuttgart, Germany
Simone Riehl
Affiliation:
Institut für Ur- und Frühgeschichte, Ältere Abteilung, Labor für Archäobotanik, Universität Tübingen, Burgsteige 11, 72070 Tübingen, Germany
*
*Corresponding author. E-mail address:[email protected] (K. Pustovoytov).

Abstract

Lithospermum (Boraginaceae) belongs to a small group of plant taxa that accumulate biogenic carbonate in their fruits. In this genus, carbonate incrustations form in the cells of the epidermis and sclerenchyma of the pericarp. Fossil Lithospermum fruits (nutlets) with well-preserved calcified tissues commonly occur in Quaternary sediments and cultural layers. We tested the suitability of biogenic carbonate of Lithospermum fruits for radiocarbon dating using a total of 15 AMS measurement results from four modern and 11 fossil samples. The 14C data from modern samples suggest that Lithospermum utilises only atmospheric carbon to synthesise calcite in the nutlets. In general, the ages determined through 14C dating of fossil fruitscorresponded well with the absolute-age intervals for archaeological sites over the last 5000 yr. Biogenic carbonate of Lithospermum fruits, like that of Celtis, represents a new source of chronological information for late Quaternary studies.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allaby, M., Allaby, R., Kent, M., Sainsbury, D., Whitmore, T., (1998). Dictionary of Plant Sciences. Oxford University Press, Oxford, New York.508 p.Google Scholar
Amundson, R., Wang, Y., Chadwick, O., Trumbore, S., McFadden, L., McDonald, E., Wells, S., DeNiro, M., (1994). Factors and processes governing the 14C content of carbonate in desert soils. Earth and Planetary Science Letters 125, 385405.Google Scholar
Berrier, J., Delmas, A.B., Bresson, L.M., (1987). Fonctionnement saisonnier et instantane d'un systeme d'alteration calcaire, approche micromorphologique. Fedoroff, N., Bresson, L.M., Courty, M.-A., Soil Micromorphology. Proceedings of the VIIth International Working Meeting on Soil Micromorphology. Paris–July 1985 Association Française pour l'Etude du Sol. Schiffer, Paris.309314.Google Scholar
Budd, D.A., Pack, S.M., Fogel, M.L., (2002). The destruction of paleoclimatic isotzopic signals in Pleistocene carbonate soil nodules of Western Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 188, 249273.Google Scholar
Cerling, T., (1991). Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols. American Journal of Science 291, 377400.CrossRefGoogle Scholar
Cerling, T., Quade, J., (1993). Stable carbon and oxygen isotopes in soil carbonates. Climate change in continental isotopic records. Geophysical Monograph. 78, 217231.Google Scholar
Chen, Y., Polach, H., (1986). Validity of 14C ages of carbonate in sediments. Radiocarbon 28, 2A 464472.Google Scholar
Evin, J., Marechal, J., Pachiaudi, C., Puissegur, J., (1980). Conditions involved in dating terrestrial shells. Radiocarbon 22, 2 545555.Google Scholar
Folk, R., Valastro, J., (1985). A successful technique for the radiocarbon dating of lime mortar. Gifford, J., Rapp, G., Archaeological Geology 303312.Google Scholar
Freundlich, J., Kuper, R., Breunig, P., Bertram, H., (1989). Radiocarbon dating of ostrich eggshells. Radiocarbon 31, 3 10301034.Google Scholar
Gabel, M.L., (1987). A fossil Lithospermum (Boraginceae) from the Tertiary of South Dakota. American Journal of Botany 74, 16901693.Google Scholar
Gabriel, U., (2000). Mitteilung zum Stand der Neolithikumsforschung in der Umgebung von Troia (Kumtepe 1993–1995; Besik-Sivritepe 1983–1984, 1987, 1998–1999). Studia Troica 10, 233238.Google Scholar
Genz, H., (2002). Die frühbronzezeitliche Keramik von Hirbet ez-Zeraqon.. Abhandlungen des Deutschen Palästina-Vereins, v. 27,2; Harrasowitz Verlag, . Wiesbaden. 166 p.Google Scholar
Goodfriend, G.A., Hood, D.J., (1983). Carbon isotope analysis of land snails shells: implications for carbon sources and radiocarbon dating. Radiocarbon 25, 810830.Google Scholar
Haas, H., Haynes, C., (1980). Discussion on radiocarbon dates from the Western Desert. Wendorf, F., Schild, R., Prehistory of the Eastern Sahara Academic Press, New York.373378.Google Scholar
Hansen, J., (2001). Macroscopic plant remains from Mediterranean caves and rockshelters: avenues of interpretation. Geoarchaeology 16, 4 401432.CrossRefGoogle Scholar
Hillman, G., Hedges, R., Moore, A., Colledge, S., Pettitt, P., (2001). New evidence of Late Glacial cereal cultivation at Abu Hureyra on the Euphrates. Holocene 11, 4 383393.Google Scholar
Hyam, R., Pankhurst, R., (1995). Plants and their Names. A Concise Dictionary. Oxford University Press, Oxford.545 p.Google Scholar
Jahren, A.H., Gabel, M.L., Amundson, R., (1998). Biomineralization in seeds: developmental trends in isotopic signatures of hackberry. Palaeogeography, Palaeoclimatology, Palaeoecology 138, 259269.Google Scholar
Korfmann, M., Kromer, B., (1993). Demircihüyük, Besik-Tepe, Troia-Eine Zwischenbilanz zur Chronologie dreier Orte in Westanatolien. Studia Troica 3, 135172.Google Scholar
Kromer, B., Korfmann, M., Jablonka, P., (2003). Heidelberg radiocarbon dates for Troia I to VIII and Kumtepe. Wagner, A., Pernicka, E., Uerpmann, H.-P., Troia and the Troad: Scientific Approaches Springer-Verlag, Berlin.4354.Google Scholar
Levin, I., Kromer, B., (2004). The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46, 3 12611272.CrossRefGoogle Scholar
Levin, I., Kromer, B., Schmidt, M., Sartorius, H., (2003). A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations. Geophysical Research Letters 30, 23 2194 10.1029/2003GL018477.Google Scholar
Marinescu-Bilcu, P.S., Cârciumaru, M., ("rciumaru, 1992). Colliers de Lithospermum purpureo-coeruleum et de “perles” de cerf dans l'Eneolithique de Roumanie dans le contexte central et sud-est europeen. Prehistoire Europeenne 2, 7088.Google Scholar
Martin, A.C, Barkley, W.D., (1973). Seed Identification Manual. University of California Press, Berkeley-Los Angeles-London.221 p.Google Scholar
Melamed, Y., (1996). Dry and charred grains from ‘Afula–A taphonomic approach. Atiqot XXX 6970.Google Scholar
Miller, N.F., (1991). The Near East. van Zeist, W., Wasylikowa, K., Behre, K.-E., Progress in Old World Paleonthnobotany 133160.Google Scholar
Mittmann, S., (1994). Hirbet ez-Zeraqon, eine Stadt der frühen Bronzezeit in Nordjordanien. Archäologie in Deutschland 2, 1015.Google Scholar
Monger, H.C., Cole, D.R., Gish, J.W., Giordano, T.H., (1998). Stable carbon and oxygen isotopes in Quaternary soil carbonates as indicators of ecogeomorphic changes in the northern Chihuahuan Desert, USA. Geoderma 82, 137172.Google Scholar
Novikova, M., Deviatov, A., Shishlina, N., (2002). A carpological investigation on finds from Bronze-Age sites of Kalmykia. Shishlina, N., Tsutskin, E., The Tomb Group “Ostrovnoy”. Results of an Interdisciplinary Study of Archaeological Sites of the North-Western Caspian Region, Moscow, Elista (in Russian) .Google Scholar
Pearsall, D.M., (2000). Paleoethnobotany. Academic Press, San Diego.700 p.Google Scholar
Pendall, E., Harden, J., Trumbore, S., Chadwick, O., (1994). Isotopic approach to soil carbonate dynamics and implications for paleoclimatic interpretations. Quaternary Research 42, 6071.Google Scholar
Pigati, J.S., Quade, J., Shahanan, T.M., Haynes, C.V. Jr., (2004). Radiocarbon dating of minute gastropods and new constrains on the timing of late Quaternary spring-discharge deposits in southern Arizona. Palaeogeography, Palaeoclimatology, Palaeoecology 204, 3345.Google Scholar
Pustovoytov, K.E., (2002). Pedogenic carbonate cutans on clasts in soils as a record of history of grassland ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology 177, 199214.Google Scholar
Pustovoytov, K., Leisten, T., (2002). Diagenetic alteration of artificial lime mortar in a Mediterranean soil: 14C and stable carbon isotopic data. 17th World Congress of Soil Science, 14–21 August, Bangkok .Google Scholar
Pustovoytov, K., Riehl, S., Mittmann, S., (2004). Radiocarbon age of carbonate in fruits of Lithospermum from the early Bronze Age settlement of Hirbet ez-Zeraqon (Jordan). Vegetation History and Archaeobotany 13, 207212.Google Scholar
Rakowski, A., Kuc, T., Nakamura, T., Pazdur, A., (2004). Radiocarbon concentration in the atmosphere and modern tree rings in the Krakow area, Southern Poland. Radiocarbon 46, 1–2 911916.Google Scholar
Ramsey, B.C., (2001). Development of the Radiocarbon Program OxCal. Radiocarbon 43, 2A 355363.CrossRefGoogle Scholar
Riehl, S., (1999). Bronze age environment and economy in the Troad. The archaeobotany of Kumtepe and Troy. BioArchaeologica vol. 2, Mo Vince Verlag, Tubingen.268 p.Google Scholar
Rother, K., Tichy, F., (2000). Italien. Wissenschaftliche Buchgesellschaft, Darmstadt.377 p.Google Scholar
Savard, M., Nesbitt, M., Gale, R., (2003). Archaeobotanical evidence for early Neolithic diet and subsistence at M'Lefaat (Iraq). Paleorient 29, 1 93106.Google Scholar
Seibert, J., (1978). Fruchtanatomische Untersuchungen an Lithospermeae (Boraginaceae). J. Cramer Verlag, Vaduz.Google Scholar
Shishlina, N., Alexandrovsky, A., Chichagova, O., van der Plicht, J., (2000). Radiocarbon chronology of the Kalmykia Catacomb culture of the west Eurasian steppe. Antiquity 74, 793799.CrossRefGoogle Scholar
Spencer, P., (2003). Paleoclimatic implications of fossiliferous Late Quaternary eolian and fluvio-lacustrine sediments, Southeastern Washington.. Paper No. 30-1. The Geological Society of America Cordillerian Section, 99th Annual Meeting (April 1–3, 2003). Puerto Vallarta, Jalisco (http://gsa.confex.com/gsa/2003CD/finalprogramm/abstract_4792.htm).Google Scholar
van Zeist, W., (2001). Third to first millennium BC plant cultivation on the Khabur, North-Eastern Syria. Palaeohistoria 41/42, 111125.Google Scholar
Wang, Y., McDonald, E., Amundson, R., McFadden, L., Chadwick, O., (1996). An isotopic study of soils in chronological sequences of alluvial deposits, Providence Mountains, California. Geological Society of America Bulletin 108, 379391.2.3.CO;2>CrossRefGoogle Scholar
Wang, Y., Jahren, A.H., Amundson, R., (1997). Potential for 14C dating of biogenic carbonate in hackberry (Celtis) endocarps. Quaternary Research 47, 3 337343.Google Scholar
Zhou, W., Head, M., Wang, F., Donahue, D., Jull, A., (1999). The reliability of AMS radiocarbon dating of shells from China. Radiocarbon 41, 4 1724.Google Scholar