Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T14:54:07.120Z Has data issue: false hasContentIssue false

Regional mapping and characterisation of old landslides in hilly regions using LiDAR-based imagery in Southern Flanders

Published online by Cambridge University Press:  20 January 2017

M. Van Den Eeckhaut*
Affiliation:
Land Management and Natural Hazards Unit, Institute for Environment and Sustainability, Joint Research Centre (JRC)–European Commission, 21027 Ispra (VA), Italy Division of Geography, Department of Earth and Environmental Sciences, K.U.Leuven, Celestijnenlaan 200E, B-3001 Heverlee, Belgium
Jean Poesen
Affiliation:
Division of Geography, Department of Earth and Environmental Sciences, K.U.Leuven, Celestijnenlaan 200E, B-3001 Heverlee, Belgium
Frans Gullentops
Affiliation:
Division of Geography, Department of Earth and Environmental Sciences, K.U.Leuven, Celestijnenlaan 200E, B-3001 Heverlee, Belgium
Liesbeth Vandekerckhove
Affiliation:
Environment, Nature and Energy Department, Flemish Government, Brussels, Belgium
Javier Hervás
Affiliation:
Land Management and Natural Hazards Unit, Institute for Environment and Sustainability, Joint Research Centre (JRC)–European Commission, 21027 Ispra (VA), Italy
*
Corresponding author at: Land Management and Natural Hazards Unit, Institute for Environment and Sustainability, Joint Research Centre (JRC)–European Commission, 21027 Ispra (VA), Italy.

Abstract

Analysis of LiDAR-derived imagery led to the discovery of more than 330 pre-Holocene to recent landslides in Southern Flanders (4850 km2). The morphology of three landslides, including the 266.5 ha deep-seated gravitational slope deformation in Alden Biesen, was investigated in more detail. The analysis of the morphological and topographical characteristics (width–length relation, frequency–area distribution and topographical threshold) of the landslides revealed important differences compared to the characteristics reported in other landslide studies, and helped understanding possible landslide triggering mechanisms. Especially the possibility of a seismic origin of the landslides was investigated. Finally, a heuristic model for region-wide landslide susceptibility mapping was successfully tested. The susceptibility model and map allow prediction of future landslide locations and contribute to better understanding the role of individual causal factors on landslide location and spatial density. The results suggest that landslides on low-gradient, soil-mantled hills are a more important contributor to landscape evolution of hilly areas than was hitherto thought. The morphology of all hilly regions of Flanders is clearly marked by landslide processes and higher landslide densities often coincide with the presence of quaternary active faults. This study further shows that high-resolution topographical data such as LiDAR significantly contributes to a better detection of old, previously unknown landslides.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AGIV, (2001). Tertiary geological map of Belgium, Agentschap voor Geografische Informatie Vlaanderen. Gent, Belgium, Digital file.Google Scholar
AGIV, (2005). LIDAR hoogtepunten – brondata van Digitaal Hoogtemodel Vlaanderen. MVG-LIN-AMINAL-afdeling Water en MVG-LIN-AWZ-afdeling Waterbouwkundig Laboratorium en Hydrologisch onderzoek, Brussel, Belgium, Digital file.Google Scholar
Ardizzone, F., Cardinali, M., Galli, M., Guzzetti, F., and Reichenbach, P. Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar. Natural Hazards and Earth System Sciences 7, (2007). 637650.Google Scholar
Booth, A.M., Roering, J.J., and Perron, J.T. Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon. Geomorphology 109, (2009). 132147.Google Scholar
Buffel, P., Matthijs, J., (2009). Toelichtingen bij de geologische kaart van België: Vlaams Gewest, Kaartblad 31–39 Brussel-Nijvel, 1:50,000. Ministerie van de Vlaamse Gemeenschap Afdeling Natuurlijke Rijkdommen en Energie, Brussel, Belgium.Google Scholar
Camelbeeck, T. The study of active faults in stable continental Europe: examples in the Roer Graben and in the Belgian seismic active zone. Aardkundige Mededelingen 8, (1997). 3538.Google Scholar
Camelbeeck, T., Alexandre, P., Vanneste, K., and Meghraoui, M. Long-term seismicity in regions of present day low seismic activity: the example of western Europe. Soil Dynamics and Earthquake Engineering 20, (2000). 405414.Google Scholar
Chacksfield, B.C., De Vos, W., D'Hooghe, L., Dusar, M., Lee, M.K., Poitevin, C., Royles, C.P., and Verniers, J. A new look at Belgian aeromagnetic and gravity data through image-based display and integrated modelling techniques. Geological Magazine 130, (1993). 583591.Google Scholar
Claes, S., Frederickx, E., and Gullentops, F. Toelichtingen bij de geologische kaart van België: Vlaams Gewest, Kaartblad 34 Tongeren, 1:50, 000. (2001). Ministerie van de Vlaamse Gemeenschap Afdeling Natuurlijke Rijkdommen en Energie, Brussel, Belgium.Google Scholar
Cruden, D.M., and Varnes, D.J. Landslide types and processes. Turner, A.K., and Schuster, R.L. Landslides, Investigation and Mitigation, Transportation Research Board. National Research Council, Special Report 247. (1996). National Academy Press, Washington, DC. 3671.Google Scholar
Debacker, T.N., Herbosch, A., Verniers, J., and Sintubin, M. Faults in the Asquempont area, southern Brabant Massif, Belgium. Netherlands Journal of Geosciences 83, (2004). 4965.Google Scholar
De Keersmaeker, L., Baeté, H., Christiaens, B., Esprit, M., Van de Kerckhove, P., and Vandekerkhove, K. Bosreservaat Jansheideberg (Hallerbos): Monitoringrapport; monitoring van de dendrometrische gegevens en de vegetatie in de steekproefcirkels en de kernvlakte. (2007). Instituut voor Natuur- en Bosonderzoek, Geraardsbergen, Belgium.Google Scholar
Demoulin, A., Pissart, A., and Schroeder, C. On the origin of late Quaternary palaeolandslides in the Liège (E Belgium) area. International Journal of Earth Sciences 92, (2003). 795805.CrossRefGoogle Scholar
De Vos, W., Verniers, J., Herbosch, A., and Vanguestaine, M. A new geological map of the Brabant Massif, Belgium. Geological Magazine 130, (1993). 606611.CrossRefGoogle Scholar
Dewitte, O., Chung, C.J., and Demoulin, A. Reactivation hazard mapping for ancient landslides in West Belgium. Natural Hazards and Earth System Sciences 6, (2006). 653662.Google Scholar
Dreesen, R., Dusar, M., Matthijs, J., Van Den Eeckhaut, M., Gullentops, F., Poesen, J., in press. An exceptionally well-preserved landslide tongue near Alden Biesen (Province of Limburg): the relevance of temporary exposures of the subsoil for elucidating complex geological history. In: Meylemans, E., De Bie, M., Cordemans, K., Poesen, J., Van Peer, Ph., Verstraeten, G. (Eds.), The Archaeology of Erosion, the Erosion of Archaeology. Proceedings of the Brussels Conference, 28–30 April 2008, Relicta Monografieën. Archeologie, Monumenten- en Landschapsonderzoek in Vlaanderen/Heritage Research in Flanders, Brussels.Google Scholar
Dunning, S.A., Mitchell, W.A., Petley, D.N., Rosser, N.J., and Cox, N.J. Landslides predating and triggered by the 2005 Kashmir earthquake: rockfall to rock avalanches. Geophysical Research Abstracts 9, (2007). 06376 Google Scholar
Ercanoğlu, M., (2003). Production of landslide susceptibility maps using fuzzy log and statistical methods: West Black Sea region (South of Kumlace – North of Yenice). Geological Engineering Dept. Hacettepe University, Ph.D. thesis, pp. 203.Google Scholar
GIS-Vlaanderen Nieuwsbrief GIS-Vlaanderen: Digitaal Hoogtemodel Vlaanderen. (2003). Ondersteunend Centrum GIS-Vlaanderen, Gent, Belgium.Google Scholar
Glenn, N.F., Streutker, D.R., Chadwick, D.J., Thackray, G.D., and Dorsch, S.J. Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology 73, (2006). 131148.Google Scholar
Guérémy, P., and Vejux, V. Mouvements de terrains successifs: les glissements et les coulées du versant sud de la Montagne d'Avize (Marne-France). Travaux de l'Institut de Géographie de Reims 69–72, (1987). 113127.Google Scholar
Gullentops, F., and Claes, S. The Bilzen fault bundle (NE Belgium). Aardkundige Mededelingen 8, (1997). 99102.Google Scholar
Guthrie, R.H., and Evans, S.G. Analysis of landslide frequencies and characteristics in a natural system, coastal British Columbia. Earth Surface Processes and Landforms 29, (2004). 13211339.Google Scholar
Halet, F. Glissements de terrain aux environs de Renaix. Bulletin de la Société Belge de Géologie 18, (1904). 161163.Google Scholar
Haneberg, W.C. The Ins and Outs of Airborne LIDAR: an introduction for practicing engineering geologists. AEG news 48, (2005). 1619.Google Scholar
Haneberg, W.C., Cole, W.F., and Kasali, G. High-resolution lidar-based landslide hazard mapping and modeling, UCSF Parnassus Campus, San Francisco. USA Bulletin of Engineering Geology and the Environment 68, (2009). 263276.Google Scholar
Haugerud, R.A., Harding, D.J., Johnson, S.Y., Harless, J.L., Weaver, C.S., and Sherrod, B.L. High resolution Lidar topography of the Puget Lowland, Washington—a bonanza for earth science. GSA Today 13, (2003). 9 Google Scholar
Issler, D., De Blasio, F.V., Elverhoi, A., Bryn, P., and Lien, R. Scaling behaviour of clayrich submarine debris flows. Marine and Petroleum Geology 22, (2005). 187194.Google Scholar
Jacobs, P., De Ceukelaire, M., De Breuck, W., and De Moor, G. Toelichting bij de geologische kaart van België: Vlaams gewest, kaartblad 29 Kortrijk, schaal 1/50, 000. (1999). Ministerie van Economische zaken en Ministerie van de Vlaamse Gemeenschap, Brussel.Google Scholar
Jenniskens, A. Nieuwen Biesen in Alden Biesen: 5 eeuwen Duitse Orde in Maastricht. (1989). Bilzen-Maastricht, Netherlands.Google Scholar
Jibson, R.W. Use of landslides for paleoseismic analysis. Engineering Geology 43, (1996). 291323.CrossRefGoogle Scholar
Kasai, M., Ikeda, M., Asahina, T., and Fujisawa, K. LiDAR-derived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan. Geomorphology 113, (2009). 5769.Google Scholar
Keaton, J.R., and DeGraff, J.V. Surface observation and geologic mapping. Turner, A.K., and Schuster, R.L. Landslides: Investigation and Mitigation, Transportation Research Board. (1996). National Research Council. National Academy Press, Washington, DC. 128230.Google Scholar
Keefer, D.K. Landslides caused by earthquakes. Geological Society of American Bulletin 95, (1984). 406421.Google Scholar
Keefer, D.K. The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions. Geomorphology 10, (1994). 265284.Google Scholar
Korup, O., and Clague, J.J. Natural hazards, extreme events, and mountain topography. Quaternary Science Reviews 28, (2009). 977990.Google Scholar
Lefèvre, M.A. Glissements de terrain dans les collines de Renaix. Annales de la Société géologique de Belgique 50, (1926–1927). 2935.Google Scholar
Malamud, B.D., Turcotte, D.L., Guzzetti, F., and Reichenbach, P. Landslide inventories and their statistical properties. Earth Surface Processes and Landforms 29, (2004). 687711.CrossRefGoogle Scholar
Mather, A.E., Griffiths, J.S., and Stokes, M. Anatomy of a fossil landslide from the Pleistocene of SE Spain. Geomorphology 50, (2003). 135149.Google Scholar
McKean, J., and Roering, J. Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology 47, (2004). 331351.Google Scholar
Moeyersons, J. The topographic thresholds of hillslope incisions in southwestern Rwanda. Catena 50, (2003). 381400.CrossRefGoogle Scholar
Moeyersons, J., Tréfois, Ph., Lavreau, J., Alimasi, D., Badriyo, I., Mitima, B., Mundala, M., Munganga, D., and Nahimana, L. A geomorphological assessment of landslide origin at Bukavu, Democratic Republic of the Congo. Engineering Geology 72, (2004). 7387.Google Scholar
Montgomery, D.R. Road surface drainage, channel initiation and slope instability. Water Resources Research 30, (1994). 19251932.Google Scholar
Montgomery, D.R., and Dietrich, W.E. A physically based model for the topographic control on shallow landsliding. Water Resources Research 30, (1994). 11531171.Google Scholar
Montgomery, D.R., and Dietrich, W.E. Landscape dissection and drainage area–slope threshold. Kirkby, M.J. Process Models and Theoretical Geomorphology. (1994). John Wiley and Sons Ltd, Chichester. 221246.Google Scholar
Moro, M., Saroli, M., Tolomei, C., and Salvi, S. Insights on the kinematics of deep-seated gravitational slope deformations along the 1915 Avezzano earthquake fault (Central Italy), from time-series DInSAR. Geomorphology 112, (2009). 261276.Google Scholar
Ost, L., Van Den Eeckhaut, M., Poesen, J., and Vanmaercke-Gottigny, M.C. Characteristics and spatial distribution of large landslides in the Flemish Ardennes. Zeitschrift für Geomorphologie N.F. 47, (2003). 329350.CrossRefGoogle Scholar
Pánek, T., Hradecký, J., Smolková, V., and Šilhán, K. Gigantic low-gradient landslides in the northern periphery of the Crimean Mountains (Ukraine). Geomorphology 95, (2008). 449473.CrossRefGoogle Scholar
Poesen, J., Nachtergaele, J., Verstraeten, G., and Valentin, C. Gully erosion and environmental change: importance and research needs. Catena 50, (2003). 91133.Google Scholar
Rodríguez, C.E., Bommer, J.J., and Chandler, R.J. Earthquake-induced landslides: 1980–1997. Soil Dynamics and Earthquake Engineering 18, (1999). 325346.Google Scholar
Rowlands, K.A., Jones, L.D., and Whitworth, M. Landslide Laser Scanning: a new look at an old problem. Quarterly Journal of Engineering Geology and Hydrogeology 36, (2003). 155157.Google Scholar
Schulz, W.H. Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington. Engineering Geology 89, (2007). 6787.Google Scholar
Siddle, R., , C., Pearce, A.J., O'Loughin, C.L., (1985). Hillslope stability and land use. American Geophysical Union, Water Resources Monograph 11, Washington, D.C..CrossRefGoogle Scholar
Somville, O. De Belgische Aardbeving van 11 Juni 1938. (1939). Drukkerij J. Duculot, Gembloux, Belgium.Google Scholar
Sosson, C., Devos, A., Lejeune, O., and Marre, A. Contribution to the study of underground quarries: the underground quarry at Glennes (Aisne - France). Acte du 4th International Symposium on Archaeological Miming History. (2009). Reishelsheim - Odenwald, Germany. 1425.Google Scholar
Stark, C.P., and Hovius, N. The characterisation of landslide size distributions. Geophysical Research Letters 28, (2001). 10911094.Google Scholar
Tarolli, P., and Tarboton, D.G. A new method for determination of most likely landslide initiation points and the evaluation of digital terrain model scale in terrain stability mapping. Hydrology and Earth System Sciences 10, (2006). 663677.Google Scholar
ten Brink, U.S., Barkan, R., Andrews, B.D., and Chayton, J.D. Size distributions and failure initiation of submarine and subaerial landslides. Earth and Planetary Science Letters 287, (2009). 3142.Google Scholar
Van Den Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Moeyersons, J., Nyssen, J., and Van Beek, L.P.H. The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides. Geomorphology 67, (2005). 351363.Google Scholar
Van Den Eeckhaut, M., Vanwalleghem, T., Poesen, J., Govers, G., Verstraeten, G., and Vandekerckhove, L. Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology 76, (2006). 392410.Google Scholar
Van Den Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Nyssen, J., Moeyersons, J., Van Beek, L.P.H., and Vandekerckhove, L. The use of LIDAR-derived images for mapping old landslides under forest. Earth Surface Processes and Landforms 32, (2007). 754769.Google Scholar
Van Den Eeckhaut, M., Poesen, J., Govers, G., Verstraeten, G., and Demoulin, A. Characteristics of the size distribution of recent and historical landslides in a populated hilly region. Earth and Planetary Science Letters 256, (2007). 588603.Google Scholar
Van Den Eeckhaut, M., Verstraeten, G., and Poesen, J. Morphology, and internal structure of a dormant landslide in a hilly area: the Collinabos landslide (Belgium). Geomorphology 89, (2007). 258273.Google Scholar
Van Doorselaer, A., Putman, R., Van der Gucht, K., and Janssens, F. De Kemmelberg, een Keltische bergvesting. Westvlaamse Archaeologica. (1987). Monografieën III, Kortrijk, Belgium.Google Scholar
Vanmaercke-Gottigny, M. Landslides as a morphogenetic phenomenon in a hilly region of Flanders (Belgium). De Boodt, M., and Gabriels, D. Assessment of Erosion. (1980). John Wiley and Sons, Chichester. 475484.Google Scholar
Vanwalleghem, T., Poesen, J., Nachtergaele, J., and Verstraeten, G. Characteristics, controlling factors and importance of deep gullies under cropland on loess-derived soils. Geomorphology 69, (2005). 7691.Google Scholar
Van Westen, C.J., (1993). Application of geographical information system to landslide hazard zonation. ITC publication no 15, ITC, Enschede, Netherlands.Google Scholar
Verachtert, E., Van Den Eeckhaut, M., Poesen, J., and Deckers, J. Factors controlling the spatial distribution of soil piping erosion on loess-derived soils: a case study from Central-Belgium. Geomorphology 119, (2010). 339348.Google Scholar
Verstraeten, G., Van Oost, K., Van Rompaey, A., Poesen, J., and Govers, G. Evaluating an integrated approach to catchment management to reduce soil loss and sediment pollution through modelling. Soil Use and Management 18, (2002). 386394.Google Scholar