Published online by Cambridge University Press: 20 January 2017
The varved sediments of the Santa Barbara Basin off southern California, offer a unique opportunity to study the changes in oceanographic conditions of this nearshore area during the last 8000 yr. Quantitative analysis of Radiolaria found in recent surface sediment samples from the eastern North Pacific allows the identification of four “assemblages” which can be related to the physical oceanography of the California Current. Two assemblages are associated with the southerly flowing California Current, one with the main stream of the current (California Current Assemblage) and the other with the offshore flow along northern California (Central Assemblage). The two other assemblages are associated with the subtropical region of the eastern North Pacific (Subtropical Assemblage) and one found mostly off the coast of Baja California (Baja Assemblage). Analysis of the Radiolaria found in the varved sediments of a core from the Santa Barbara Basin give an 8000-yr continuous record of these four assemblages. The California and Baja Assemblages show only minor fluctuations in their importance in the sediments of the Santa Barbara Basin. The California Assemblage, however, shows a steady increase during this time period. Prior to 5400 yr B.P. the Radiolaria were predominately subtropical in character, whereas after 5400 yr B.P. the Central Assemblage becomes more important. Since 5400 yr B.P. most of the changes in the radiolarian fauna consist of fluctuations in the importance of these two assemblages. Past sea-surface temperatures for the month of February were calculated using the transfer function technique of J. Imbrie and N. G. Kipp (1971, In “The Late Cenozore Glacial Ages” L. K. Turekian, Ed.), (Chap. 5, Yale Univ. Press, New Haven, Conn.). The time series of paleotemperature estimates show major changes in the average February temperature of Santa Barbara Basin waters. The range of estimated temperatures (12°C) exceeds that of the historical observations of February temperatures in the Santa Barbara Basin but does not exceed the observed range for the California Current region. The intervals from 800 to 1800 yr B.P. 3600 to 3800 yr B.P. and 5400 to the end of the record appear to have been generally warmer than today. Comparison of the Holocene record of alpine glacial advances with the radiolarian assemblage and paleotemperature time series shows that the initiations of advances was coincident with a decrease in sea-surface temperatures and an increase in the importance of the Central Assemblage in the Santa Barbara Basin. The terminations of these advances were not marked by any consistent characteristic in the Santa Barbara Basin time series.