Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T07:29:15.712Z Has data issue: false hasContentIssue false

Origin of last-glacial loess in the western Yukon-Tanana Upland, central Alaska, USA

Published online by Cambridge University Press:  10 April 2018

Daniel R. Muhs*
Affiliation:
U.S. Geological Survey, MS 980, Box 25046, Federal Center, Denver, Colorado 80225, USA
Jeffrey S. Pigati
Affiliation:
U.S. Geological Survey, MS 980, Box 25046, Federal Center, Denver, Colorado 80225, USA
James R. Budahn
Affiliation:
U.S. Geological Survey, MS 980, Box 25046, Federal Center, Denver, Colorado 80225, USA
Gary L. Skipp
Affiliation:
U.S. Geological Survey, MS 980, Box 25046, Federal Center, Denver, Colorado 80225, USA
E. Arthur Bettis III
Affiliation:
Department of Earth and Environmental Sciences, University of Iowa, Iowa City, Iowa 5224, USA
Britta Jensen
Affiliation:
Department of Earth Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
*
*Corresponding author at: U.S. Geological Survey, MS 980, Box 25046, Federal Center, Denver, Colorado 80225, USA. E-mail address: [email protected] (D.R. Muhs).

Abstract

Loess is widespread over Alaska, and its accumulation has traditionally been associated with glacial periods. Surprisingly, loess deposits securely dated to the last glacial period are rare in Alaska, and paleowind reconstructions for this time period are limited to inferences from dune orientations. We report a rare occurrence of loess deposits dating to the last glacial period, ~19 ka to ~12 ka, in the Yukon-Tanana Upland. Loess in this area is very coarse grained (abundant coarse silt), with decreases in particle size moving south of the Yukon River, implying that the drainage basin of this river was the main source. Geochemical data show, however, that the Tanana River valley to the south is also a likely distal source. The occurrence of last-glacial loess with sources to both the south and north is explained by both regional, synoptic-scale winds from the northeast and opposing katabatic winds that could have developed from expanded glaciers in both the Brooks Range to the north and the Alaska Range to the south. Based on a comparison with recent climate modeling for the last glacial period, seasonality of dust transport may also have played a role in bringing about contributions from both northern and southern sources.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ager, T.A., 2003. Late Quaternary vegetation and climate history of the central Bering land bridge from St. Michael Island, western Alaska. Quaternary Research 60, 1932.Google Scholar
Ager, T.A., Brubaker, L.B., 1985. Quaternary palynology and vegetational history of Alaska. In: Bryant, V.M., Jr., Holloway, R.G. (Eds.), Pollen Records of Late-Quaternary North American Sediments. American Association of Stratigraphic Palynologists Foundation, Dallas, TX, pp. 353383.Google Scholar
Alder, J.R., Hostetler, S.W., 2015. Global climate simulations at 3000-year intervals for the last 21 000 years with the GENMOM coupled atmosphere-ocean model. Climate of the Past 11, 449471.Google Scholar
Anderson, P.M., Brubaker, L.B., 1994. Vegetation history of northcentral Alaska: a mapped summary of late-Quaternary pollen data. Quaternary Science Reviews 13, 7192.CrossRefGoogle Scholar
Anderson, P.M., Reanier, R.E., Brubaker, L.B., 1988. Late Quaternary vegetational history of the Black River region in northeastern Alaska. Canadian Journal of Earth Sciences 25, 8494.Google Scholar
Antoine, P., Rousseau, D.-D., Fuchs, M., Hatté, C., Gauthier, C., Markovic, S.B., Jovanovic, M., Gaudenyi, T., Moine, O., Rossignol, J., 2009. High-resolution record of the last climatic cycle in the southern Carpathian Basin (Surduk, Vojvodina, Serbia). Quaternary International 198, 1936.Google Scholar
Auclair, M., Lamothe, M., Lagroix, F., Banerjee, S.K., 2007. Luminescence investigation of loess and tephra from Halfway House section, Central Alaska. Quaternary Geochronology 2, 3438.Google Scholar
Baker, R.G., Waln, K.A., 1985. Quaternary pollen records from the Great Plains and central United States. In: Bryant, V.M., Jr., Holloway, R.G. (Eds.), Pollen Records of Late-Quaternary North American Sediments. American Association of Stratigraphic Palynologists Foundation, Dallas, TX, pp. 191203.Google Scholar
Barry, R.G., 1992. Mountain Weather and Climate. Routledge, London.Google Scholar
Begét, J., 1990. Middle Wisconsinan climate fluctuations recorded in central Alaskan loess. Géographie Physique et Quaternaire 44, 313.Google Scholar
Begét, J., Edwards, M., Hopkins, D., Keskinen, M., Kukla, G., 1991. Old Crow tephra found at the Palisades of the Yukon, Alaska. Quaternary Research 35, 291297.Google Scholar
Berger, A., Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317.Google Scholar
Berger, G.W., 2003. Luminescence chronology of late Pleistocene loess-paleosol and tephra sequences near Fairbanks, Alaska. Quaternary Research 60, 7083.Google Scholar
Bettis, E.A. III, Muhs, D.R., Roberts, H.M., Wintle, A.G., 2003. Last glacial loess in the conterminous USA. Quaternary Science Reviews 22, 19071946.Google Scholar
Bigelow, N.H., Edwards, M.E., 2001. A 14,000 yr paleoenvironmental record from Windmill Lake, central Alaska: Lateglacial and Holocene vegetation in the Alaska Range. Quaternary Science Reviews 20, 203215.Google Scholar
Bigelow, N.H., Brubaker, L.B., Edwards, M.E., Harrison, S.P., Prentice, I.C., Anderson, P.M., Andreev, A.A., et al., 2003. Climate change and Arctic ecosystems: 1. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present. Journal of Geophysical Research: Atmospheres 108, 8170. http://dx.doi.org/10.1029/2002JD002558.CrossRefGoogle Scholar
Birkeland, P.W., 1999. Soils and Geomorphology. Oxford University Press, New York.Google Scholar
Briner, J.P., Kaufman, D.S., 2008. Late Pleistocene mountain glaciation in Alaska: key chronologies. Journal of Quaternary Science 23, 659670.Google Scholar
Brown, J., Ferrians, O.J. Jr., Heginbottom, J.A., Melnikov, E.S., 1997. Circum-Arctic Map of Permafrost and Ground-Ice Conditions. U.S. Geological Survey (USGS) Map CP-45, scale 1:10,000,000. USGS, Denver, CO.Google Scholar
Budahn, J.R., Wandless, G.A., 2002. Instrumental neutron activation by long count. In: Taggart, J.E., Jr. (Ed.), Analytical Methods for Chemical Analysis of Geologic and Other Materials. U.S. Geological Survey (USGS) Open-File Report 02-223. USGS, Denver, CO, pp. X-1–X-13.Google Scholar
Carlson, L.J., Finney, B.P., 2004. A 130 0-year history of vegetation and environmental change at Jan Lake, east-central Alaska. The Holocene 14, 818827.Google Scholar
DiPietro, L.M., Driese, S.G., Nelson, T.W., Harvill, J.L., 2017. Variations in late Quaternary wind intensity from grain-size partitioning of loess deposits in the Nenana River Valley, Alaska. Quaternary Research 87, 258274.Google Scholar
Dreimanis, A., 1962. Quantitative gasometric determination of calcite and dolomite by using Chittick apparatus. Journal of Sedimentary Petrology 32, 520529.Google Scholar
Dyke, A.S., Andrews, J.T., Clark, P.U., England, J.H., Miller, G.H., Shaw, J., Veillette, J.J., 2002. The Laurentide and Innuitian ice sheets during the Last Glacial Maximum. Quaternary Science Reviews 21, 931.Google Scholar
Eberl, D.D., 2004. Quantitative mineralogy of the Yukon River system: changes with reach and season, and determining sediment provenance. American Mineralogist 89, 17841794.Google Scholar
Edwards, M.E., Barker, E.D. Jr., 1994. Climate and vegetation in northeastern Alaska 18,000 yr B.P.–present. Palaeogeography, Palaeoclimatology, Palaeoecology 109, 127135.Google Scholar
Edwards, M.E., Brubaker, L.B., 1986. Late Quaternary vegetation history of the Fishhook Bend area, Porcupine River, Alaska. Canadian Journal of Earth Sciences 23, 17651773.CrossRefGoogle Scholar
Edwards, M.E., Anderson, P.M., Brubaker, L.B., Ager, T.A., Andreev, A.A., Bigelow, N.H., Cwynar, L.C., et al., 2000. Pollen-based biomes for Beringia 18,000, 6000 and 0 14C yr BP. Journal of Biogeography 27, 521554.CrossRefGoogle Scholar
Edwards, M.E., Grosse, G., Jones, B.M., McDowell, P., 2016. The evolution of a thermokarst-lake landscape: Late Quaternary permafrost degradation and stabilization in interior Alaska. Sedimentary Geology 340, 314.Google Scholar
Edwards, M.E., Mock, C.J., Finney, B.P., Barber, V.A., Bartlein, P.J., 2001. Potential analogues for paleoclimatic variations in eastern interior Alaska during the past 14,000 yr: atmospheric-circulation controls of regional temperature and moisture responses. Quaternary Science Reviews 20, 189202.Google Scholar
Foster, H.L., Laird, J., Keith, T.E.C., Cushing, G.W., Menzie, D.W., 1983. Preliminary Geologic Map of the Circle Quadrangle, Alaska. U.S. Geological Survey (USGS) Open-File Report 83-170-A, scale, 1:250,000. USGS, Menlo Park, CA.Google Scholar
Froese, D., Westgate, J., Preece, S., Storer, J., 2002. Age and significance of the late Pleistocene Dawson tephra in eastern Beringia. Quaternary Science Reviews 21, 21372142.Google Scholar
Froese, D.G., Smith, D.G., Clement, D.T., 2005. Characterizing large river history with shallow geophysics: middle Yukon River, Yukon Territory and Alaska. Geomorphology 67, 391406.Google Scholar
Froese, D.G., Zazula, G.D., Reyes, A.V., 2006. Seasonality of the late Pleistocene Dawson tephra and exceptional preservation of a buried riparian surface in central Yukon Territory, Canada. Quaternary Science Reviews 25, 15421551.Google Scholar
Grimley, D.A., Follmer, L.R., McKay, E.D., 1998. Magnetic susceptibility and mineral zonations controlled by provenance in loess along the Illinois and central Mississippi River valleys. Quaternary Research 49, 2436.Google Scholar
Guthrie, R.D., 1990. Frozen Fauna of the Mammoth Steppe: The Story of Blue Babe. University of Chicago Press, Chicago.Google Scholar
Hamilton, T.D., 1982. A late Pleistocene glacial chronology for the southern Brooks Range: stratigraphic record and regional significance. Geological Society of America Bulletin 93, 700716.Google Scholar
Hamilton, T.D., Craig, J.L., Sellmann, P.V., 1988. The Fox permafrost tunnel: a late Quaternary geologic record in central Alaska. Geological Society of America Bulletin 100, 948969.Google Scholar
Höfle, C., Edwards, M.E., Hopkins, D.M., Mann, D.H., 2000. The full-glacial environment of the northern Seward Peninsula, Alaska, reconstructed from the 21,500-year-old Kitluk paleosol. Quaternary Research 53, 143153.CrossRefGoogle Scholar
Höfle, C., Ping, C.-L., 1996. Properties and soil development of late-Pleistocene paleosols from Seward Peninsula, northwest Alaska. Geoderma 71, 219243.Google Scholar
Hopkins, D.M., 1963. Geology of the Imuruk Lake Area, Seward Peninsula, Alaska. U.S. Geological Survey (USGS) Bulletin 1141-C. U.S. Government Printing Office, Washington, DC.Google Scholar
Hopkins, D.M., 1982. Aspects of the paleogeography of Beringia during the late Pleistocene. In: Hopkins, D.M., Matthews, J.V., Jr., Schweger, C.E., Young, S.B. (Eds.), Paleoecology of Beringia. Academic Press, New York, pp. 328.Google Scholar
Jensen, B., Froese, D., Preece, S., Westgate, J., Stachel, T., 2008. An extensive middle to late Pleistocene tephrochronologic record from east-central Alaska. Quaternary Science Reviews 27, 411427.Google Scholar
Jensen, B.J.L., Evans, M.E., Froese, D.G., Kravchinsky, V.A., 2016. 150,000 Years of loess accumulation in central Alaska. Quaternary Science Reviews 135, 123.Google Scholar
Jensen, B.J.L., Preece, S.J., Lamothe, M., Pearce, N.J.G., Froese, D.G., Westgate, J.A., Schaefer, J., Begét, J., 2011. The variegated (VT) tephra: a new regional marker for middle to late marine isotope stage 5 across Yukon and Alaska. Quaternary International 246, 312323.Google Scholar
Jensen, B.J.L., Reyes, A.V., Froese, D.G., Stone, D.B., 2013. The Palisades is a key reference site for the middle Pleistocene of eastern Beringia: new evidence from paleomagnetics and regional tephrostratigraphy. Quaternary Science Reviews 63, 91108.Google Scholar
Kaufman, D.S., Manley, W.F., Ager, T.A., Axford, Y., Balascio, N.L., Begét, J.E., Brigham-Grette, J., et al., 2004. Pleistocene maximum and late Wisconsinan glacier extents across Alaska, U.S.A. In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciations—Extent and Chronology, Part II. Developments in Quaternary Science 2. Elsevier, Amsterdam, pp. 927.Google Scholar
Lamb, H.F., Edwards, M.E., 1988. The Arctic. In: Huntley, B., Webb, T., III (Eds.), Vegetation History. Kluwer Academic, Dordrecht, the Netherlands, pp. 519555.Google Scholar
Lea, P.D., Waythomas, C.F., 1990. Late-Pleistocene eolian sand sheets in Alaska. Quaternary Research 34, 269281.Google Scholar
Machalett, B., Oches, E.A., Frechen, M., Zöller, L., Hambach, U., Mavlyanova, N.G., Markovic, S.B., Endlicher, W., 2008. Aeolian dust dynamics in central Asia during the Pleistocene: driven by the long-term migration, seasonality, and permanency of the Asiatic polar front. Geochemistry, Geophysics, Geosystems 9, Q08Q09. http://dx.doi.org/10.1029/2007GC001938.CrossRefGoogle Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C. Jr., Shackleton, N.J., 1987. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research 27, 129.Google Scholar
Matheus, P., Begét, J., Mason, O., Gelvin-Reymiller, C., 2003. Late Pliocene to late Pleistocene environments preserved at the Palisades site, Yukon River, Alaska. Quaternary Research 60, 3343.Google Scholar
McDowell, P.F., Edwards, M.E., 2001. Evidence of Quaternary climatic variations in a sequence of loess and related deposits at Birch Creek, Alaska: implications for the Stage 5 climatic chronology. Quaternary Science Reviews 20, 6376.Google Scholar
McGeehin, J., Burr, G.S., Jull, A.J.T., Reines, D., Gosse, J., Davis, P.T., Muhs, D., Southon, J.R., 2001. Stepped-combustion 14C dating of sediment: a comparison with established techniques. Radiocarbon 43, 255261.Google Scholar
McLennan, S.M., 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Reviews in Mineralogy 21, 169200.Google Scholar
Moore, D.M., Reynolds, R.C. Jr., 1989. X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford.Google Scholar
Muhs, D.R., 2013. Loess and its geomorphic, stratigraphic, and paleoclimatic significance in the Quaternary. In: Lancaster, N., Sherman, D.J., Baas, A.C.W. (Eds.), Treatise on Geomorphology Vol. 11, Aeolian Geomorphology, Academic Press, San Diego, CA, pp. 149183.CrossRefGoogle Scholar
Muhs, D.R., Ager, T.A., Been, J., Bradbury, J.P., Dean, W.E., 2003a. A late Quaternary record of eolian silt deposition in a maar lake, St. Michael Island, western Alaska. Quaternary Research 60, 110122.Google Scholar
Muhs, D.R., Ager, T.A., Been, J.M., Rosenbaum, J.G., Reynolds, R.L., 2000. An evaluation of methods for identifying and interpreting buried soils in late Quaternary loess in Alaska. U.S. Geological Survey Professional Paper 1615, 127146.Google Scholar
Muhs, D.R., Ager, T.A., Bettis, E.A. III, McGeehin, J., Been, J.M., Begét, J.E., Pavich, M.J., Stafford, T.W. Jr., Stevens, D.S.P., 2003b. Stratigraphy and paleoclimatic significance of late Quaternary loess-paleosol sequences of the last interglacial-glacial cycle in central Alaska. Quaternary Science Reviews 22, 19471986.Google Scholar
Muhs, D.R., Ager, T.A., Skipp, G., Beann, J., Budahn, J.R., McGeehin, J.P., 2008a. Paleoclimatic significance of chemical weathering in loess-derived paleosols of subarctic central Alaska. Arctic, Antarctic, and Alpine Research 40, 396411.Google Scholar
Muhs, D.R., Bettis, E.A. III, 2000. Geochemical variations in Peoria Loess of western Iowa indicate paleowinds of midcontinental North America during last glaciation. Quaternary Research 53, 4961.Google Scholar
Muhs, D.R., Bettis, E.A. III, Aleinikoff, J., McGeehin, J.P., Beann, J., Skipp, G., Marshall, B.D., Roberts, H.M., Johnson, W.C., Benton, R., 2008b. Origin and paleoclimatic significance of late Quaternary loess in Nebraska: evidence from stratigraphy, chronology, sedimentology, and geochemistry. Geological Society of America Bulletin 120, 13781407.Google Scholar
Muhs, D.R., Bettis, E.A. III, Roberts, H.M., Harlan, S., Paces, J.B., Reynolds, R., 2013a. Chronology and provenance of last-glacial (Peoria) loess in western Iowa and paleoclimatic implications. Quaternary Research 80, 468481.CrossRefGoogle Scholar
Muhs, D.R., Budahn, J.R., 2006. Geochemical evidence for the origin of late Quaternary loess in central Alaska. Canadian Journal of Earth Sciences 43, 323337.Google Scholar
Muhs, D.R., Budahn, J.R., McGeehin, J.P., Bettis, E.A. III, Skipp, G., Paces, J.B., Wheeler, E.A., 2013b. Loess origin, transport, and deposition over the past 10,000 years, Wrangell-St. Elias National Park, Alaska. Aeolian Research 11, 8599.Google Scholar
Muhs, D.R., Budahn, J.R., Skipp, G.L., McGeehin, J.P., 2016a. Geochemical evidence for seasonal controls on the transportation of Holocene loess, Matanuska Valley, southern Alaska, USA. Aeolian Research 21, 6173.Google Scholar
Muhs, D.R., Lancaster, N., Skipp, G.L., 2016b. A complex origin for the Kelso Dunes, Mojave National Preserve, California USA: a case study using a simple geochemical method with global applications. Geomorphology 276, 222243.Google Scholar
Muhs, D.R., McGeehin, J.P., Beann, J., Fisher, E., 2004. Holocene loess deposition and soil formation as competing processes, Matanuska Valley, southern Alaska. Quaternary Research 61, 265276.CrossRefGoogle Scholar
Oches, E.A., Banerjee, S.K., Solheid, P.A., Frechen, M., 1998. High resolution proxies of climate variability in the Alaskan loess record. In: Busacca, A.J. (Ed.), Dust Aerosols, Loess Soils and Global Change. Miscellaneous Publication No. MISC0190. Washington State University, College of Agriculture and Home Economics, Pullman, pp. 167170.Google Scholar
Onishi, H., Sandell, E.B., 1955. Geochemistry of arsenic. Geochimica et Cosmochimica Acta 7, 133.Google Scholar
Péwé, T.L., 1975a. Quaternary Geology of Alaska. U.S. Geological Survey (USGS) Professional Paper 835. U.S. Government Printing Office, Washington, DC.Google Scholar
Péwé, T.L., 1975b. Quaternary Stratigraphic Nomenclature in Unglaciated Central Alaska. U.S. Geological Survey (USGS) Professional Paper 862. U.S. Government Printing Office, Washington, DC.Google Scholar
Péwé, T.L., Wahrhaftig, C., Weber, F.R., 1966. Geologic Map of the Fairbanks Quadrangle, Alaska. U.S. Geological Survey (USGS) Miscellaneous Investigations Map I-455, scale 1:250,000. USGS, Reston, VA.Google Scholar
Pigati, J.S., McGeehin, J.P., Muhs, D.R., Bettis, E.A. III, 2013. Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropods. Quaternary Science Reviews 76, 114128.Google Scholar
Pigati, J.S., McGeehin, J.P., Muhs, D.R., Grimley, D.C., Nekola, J.C., 2015. Radiocarbon dating loess deposits in the Mississippi Valley using terrestrial gastropod shells (Polygyridae, Helicinidae, Discidae). Aeolian Research 16, 2533.CrossRefGoogle Scholar
Pigati, J.S., Rech, J.A., Nekola, J.C., 2010. Radiocarbon dating of small terrestrial gastropod shells in North America. Quaternary Geochronology 5, 519532.Google Scholar
Pilsbry, H.A., 1948. Land Mollusca of North America (North of Mexico). Vol. 2, Part 2. Academy of Natural Sciences of Philadelphia Monographs, 3. Academy of Natural Sciences, Philadelphia, PA.Google Scholar
Preece, S.J., Pearce, N.J.G., Westgate, J.A., Froese, D.G., Jensen, B.J.L., Perkins, W.T., 2011. Old Crow tephra across eastern Beringia: a single cataclysmic eruption at the close of Marine Isotope Stage 6. Quaternary Science Reviews 30, 20692090.Google Scholar
Preece, S.J., Westgate, J.A., Gorton, M.P., 1992. Compositional variation and provenance of late Cenozoic distal tephra beds, Fairbanks area. Alaska. Quaternary International 13/14, 97101.Google Scholar
Preece, S.J., Westgate, J.A., Stemper, B.A., Péwé, T.L., 1999. Tephrochronology of late Cenozoic loess at Fairbanks, central Alaska. Geological Society of America Bulletin 111, 7190.Google Scholar
Reger, R.D., Pinney, D.S., Burke, R.M., Wiltse, M.A., 1996. Catalog and Initial Analyses of Geologic Data Related to Middle to Late Quaternary Deposits, Cook Inlet Region, Alaska. Report of Investigations 95-6. State of Alaska, Department of Natural Resources, Division of Geological and Geophysical Surveys, Fairbanks, AK.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Grootes, P.M., et al., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.Google Scholar
Reyes, A.V., Froese, D.G., Jensen, B.J.L., 2010a. Permafrost response to last interglacial warming: field evidence from non-glaciated Yukon and Alaska. Quaternary Science Reviews 29, 32563274.Google Scholar
Reyes, A.V., Jensen, B.J.L., Zazula, G.D., Ager, T.A., Kuzmina, S., La Farge, C., Froese, D.G., 2010b. A late-Middle Pleistocene (Marine Isotope Stage 6) vegetated surface buried by Old Crow tephra at the Palisades, interior Alaska. Quaternary Science Reviews 29, 801811.Google Scholar
Reyes, A.V., Zazula, G.D., Kuzmina, S., Ager, T.A., Froese, D.G., 2011. Identification of last interglacial deposits in eastern Beringia: a cautionary note from the Palisades, interior Alaska. Journal of Quaternary Science 26, 345352.Google Scholar
Roberts, H.M., 2012. Testing post-IR IRSL protocols for minimising fading in feldspars, using Alaskan loess with independent chronological control. Radiation Measurements 47, 716724.Google Scholar
Roberts, H.M., Muhs, D.R., Wintle, A.G., Duller, G.A.T., Bettis, E.A. III, 2003. Unprecedented last-glacial mass accumulation rates determined by luminescence dating of loess from western Nebraska. Quaternary Research 59, 411419.Google Scholar
Rousseau, D.-D., Sima, A., Antoine, P., Hatté, C., Lang, A., Zöller, L., 2007. Link between European and North Atlantic abrupt climate changes over the last glaciation. Geophysical Research Letters 34, L22713. http://dx.doi.org/10.1029/2007GL031716.Google Scholar
Sainsbury, C.L., 1972. Geologic Map of the Teller Quadrangle, Western Seward Peninsula, Alaska. U.S. Geological Survey (USGS) Miscellaneous Geologic Investigations Map I-685, scale 1:250,000. USGS, Reston, VA.Google Scholar
Schaetzl, R.J., Attig, J.W., 2013. The loess cover of northeastern Wisconsin. Quaternary Research 79, 199214.Google Scholar
Schoeneberger, P.J., Wysocki, D.A., Benham, E.C., Soil Survey Staff. 2012. Field Book for Describing and Sampling Soils, Version 3.0. U.S. Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.Google Scholar
Stuiver, M., Reimer, P.J., 1993. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, 215230.Google Scholar
Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific, Oxford, UK.Google Scholar
Thorson, R.M., Bender, G., 1985. Eolian deflation by ancient katabatic winds: a late Quaternary example from the north Alaska Range. Geological Society of America Bulletin 96, 702709.Google Scholar
Tinner, W., Hu, F.S., Beer, R., Kaltenrieder, P., Scheurer, B., Krähenbühl, U., 2006. Postglacial vegetational and fire history: pollen, plant macrofossil and charcoal records from two Alaskan lakes. Vegetation History and Archaeobotany 15, 279293.Google Scholar
Tsoar, H., Pye, K., 1987. Dust transport and the question of desert loess formation. Sedimentology 34, 139153.Google Scholar
Weber, F.R., Wheeler, K.L., Rinehart, C.D., Light, T.D., 1997. Generalized Geologic Map of the Livengood Quadrangle, Alaska. U.S. Geological Survey (USGS) Open-File Report 97-484-A, scale, 1:250,000. USGS, Menlo Park, CA.Google Scholar
Wells, P.V., Stewart, J.D., 1987. Spruce charcoal, conifer macrofossils, and landsnail and small-vertebrate faunas in Wisconsinan sediments on the High Plains of Kansas. In: Johnson, W.C. (Ed.), Quaternary Environments of Kansas. Kansas Geological Survey Guidebook Series 5. Kansas Geological Survey, Lawrence, KS, pp. 129140.Google Scholar
Westgate, J., 1988. Isothermal plateau fission-track age of the late Pleistocene Old Crow tephra, Alaska. Geophysical Research Letters 15, 376379.Google Scholar
Westgate, J.A., Stemper, B.A., Péwé, T.L., 1990. A 3 m.y. record of Pliocene-Pleistocene loess in interior Alaska. Geology 18, 858861.Google Scholar
White, J.D., Koepke, B.E., Swanson, D.K., 2000. Soil Survey of North Star Area, Alaska. U.S. Department of Agriculture, Natural Resources Conservation Service, Washington, DC.Google Scholar
Williams, J.R., 1962. Geologic Reconnaissance of the Yukon Flats District, Alaska. U.S. Geological Survey (USGS) Bulletin 1111-H. U.S. Government Printing Office, Washington, DC, pp. H289H331.Google Scholar
Zazula, G.D., Froese, D.G., Westgate, J.A., La Farge, C., Mathewes, R.W., 2005. Paleoecology of Beringian “packrat” middens from central Yukon Territory, Canada. Quaternary Research 63, 189198.Google Scholar
Zazula, G.D., Schweger, C.E., Beaudoin, A.B., McCourt, G.H., 2006. Macrofossil and pollen evidence for full-glacial steppe within an ecological mosaic along the Bluefish River, eastern Beringia. Quaternary International 142–143, 219.CrossRefGoogle Scholar
Supplementary material: File

Muhs et al. supplementary material

Tables S1-S5

Download Muhs et al. supplementary material(File)
File 138.1 KB