Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T11:54:05.356Z Has data issue: false hasContentIssue false

Late Quaternary vegetation and climate history of a perennial river canyon in the Río Salado basin (22°S) of Northern Chile

Published online by Cambridge University Press:  20 January 2017

Claudio Latorre*
Affiliation:
Center for Advanced Studies in Ecology and Biodiversity (CASEB), Departamento de Ecología, P. Universidad Católica de Chile, Casilla 114-D, Santiago, Chile Institute of Ecology and Biodiversity (IEB), Universidad de Chile, Casilla 653, Santiago, Chile
Julio L. Betancourt
Affiliation:
Desert Laboratory, U.S. Geological Survey and University of Arizona, 1675 W. Anklam Rd., Tucson, AZ 85745, USA
Mary T.K. Arroyo
Affiliation:
Institute of Ecology and Biodiversity (IEB), Universidad de Chile, Casilla 653, Santiago, Chile
*
*Corresponding author. Center for Advanced Studies in Ecology and Biodiversity (CASEB), Departamento de Ecología, P. Universidad Católica de Chile, Casilla 114-D, Santiago, Chile. Fax: +1 562 686 2621. E-mail address:[email protected] (C. Latorre).

Abstract

Plant macrofossils from 33 rodent middens sampled at three sites between 2910 and 3150 m elevation in the main canyon of the Río Salado, northern Chile, yield a unique record of vegetation and climate over the past 22,000 cal yr BP. Presence of low-elevation Prepuna taxa throughout the record suggests that mean annual temperature never cooled by more than 5°C and may have been near-modern at 16,270 cal yr BP. Displacements in the lower limits of Andean steppe and Puna taxa indicate that mean annual rainfall was twice modern at 17,520–16,270 cal yr BP. This pluvial event coincides with infilling of paleolake Tauca on the Bolivian Altiplano, increased ENSO activity inferred from a marine core near Lima, abrupt deglaciation in southern Chile, and Heinrich Event 1. Moderate to large increases in precipitation also occurred at 11,770–9550 (Central Atacama Pluvial Event), 7330–6720, 3490–2320 and at 800 cal yr BP. Desiccation occurred at 14,180, 8910–8640, and 4865 cal yr BP. Compared to other midden sites in the region, early Holocene desiccation seems to have happened progressively earlier farther south. Emerging trends from the cumulative midden record in the central Atacama agree at millennial timescales with improved paleolake chronologies for the Bolivian Altiplano, implying common forcing through changes in equatorial Pacific sea-surface temperature gradients.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M.B., Wolfe, B.B., Aravena, R., Wolfe, A.P., Seltzer, G.O., (2000). Holocene hydrological reconstructions from stable isotopes and paleolimnology, Cordillera Real, Bolivia. Quaternary Science Reviews 19, 18011820.CrossRefGoogle Scholar
Aldunate, C., Berenguer, J., Castro, V., Cornejo, L., Martínez, J.L., Sinclaire, C., . “Cronología y asentamiento en la región del Loa Superior”.. Dirección de Investigación y Bibliotecas, Universidad de Chile, Imprenta Universitaria, Santiago.Google Scholar
Arroyo, M.T.K., Squeo, F., Armesto, J.J., Villagrán, C., (1988). Effects of aridity on plant diversity in the Northern Chilean Andes: results of a natural experiment. Annals of the Missouri Botanical Garden 75, 5578.Google Scholar
Baker, P.A., Rigsby, C.A., Seltzer, G.O., Fritz, S.C., Lowenstein, T.K., Bacher, N.P., Veliz, C., (2001). Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409, 698701.Google Scholar
Betancourt, J.L., Van Devender, T.R., Martin, P.S., (1990). Packrat Middens: The Last 40,000 years of Biotic Change. University of Arizona Press, Tucson, AZ.467.Google Scholar
Betancourt, J.L., Latorre, C., Rech, J., Quade, J., Rylander, K.A., (2000). A 22,000-yr record of monsoonal precipitation from northern Chile's Atacama Desert. Science 289, 15461550.Google Scholar
Bobst, A.L., Lowenstein, T.K., Jordan, T.E., Godfrey, L.V., Hein, M.C., Ku, T.-L., Luo, S., (2001). A 106 ka paleoclimate record from drill core of the Salar de Atacama, northern Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 173, 2142.Google Scholar
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, A., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., Bonani, G., (1997). A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, 12571266.Google Scholar
Clapperton, C.M., Clayton, J.D., Benn, D.I., Marden, C.J., Argollo, J., (1997). Late Quaternary glacier advances and palaeolake highstands in the Bolivian Altiplano. Quaternary International 38/39, 4959.CrossRefGoogle Scholar
Clement, A.C., Cane, M.A., and Seager, R., (2001). An orbitally driven tropical source for abrupt climate change.. Journal of Climate 14, , 23692375. doi:10.1175/1520–0442(2001)014<2369:AODTSF>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Denton, G.H., Heusser, C.J., Lowell, T.V., Moreno, P.I., Andersen, B.G., Heusser, L.E., Schlücter, C., Marchant, D.R., (1999). Interhemispheric linkage of paleoclimate during the Last Glaciation. Geografiska Annaler. Series A. Physical Geography 81, 107153.CrossRefGoogle Scholar
Fritz, S.C., Baker, P.A., Lowenstein, T.K., Seltzer, G.O., Rigsby, C.A., Dwyer, G.S., Tapia, P.M., Arnold, K.K., Ku, T.-L., Luoh, S., (2004). Hydrologic variation during the last 170,000 years in the southern hemisphere tropics of South America. Quaternary Research 61, 95104.CrossRefGoogle Scholar
Garreaud, R.D., Vuille, M., Clement, A., (2003). The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 522.Google Scholar
Geyh, M.A., Grosjean, M., Núñez, L., Schotterer, U., (1999). Radiocarbon reservoir effect and the timing of the late-Glacial/Early Holocene humid phase in the Atacama desert (northern Chile). Quaternary Research 52, 143153.Google Scholar
Grosjean, M., (1994). Paleohydrology of the Laguna Lejia (north Chilean Altiplano) and climatic implications for late-glacial times. Palaeogeograohy, Palaeoclimatology, Palaeoecology 109, 89100.CrossRefGoogle Scholar
Grosjean, M., (2001). Mid-Holocene climate in the South-Central Andes: humid or dry?. Science 292, 2391a.Google Scholar
Grosjean, M., Nuñez, L., Cartajena, I., Messerli, B., (1997). Mid-Holocene climate and culture change in the Atacama Desert, northern Chile. Quaternary Research 48, 239246.Google Scholar
Grosjean, M., van Leeuwen, J.F.N., van der Knaap, W.O., Geyh, M.A., Ammann, B., Tanner, W., Messerli, B., Núñez, L.A., Valero-Garcés, B.L., Veit, H., (2001). A 22,000 14C year BP sediment and pollen record of climate change from Laguna Miscanti (23°S), northern Chile. Global and Planetary Change 28, 3551.Google Scholar
Grosjean, M., Cartajena, I., Geyh, M.A., Nuñez, L., (2003). From proxy data to paleoclimate interpretation: the mid-Holocene paradox of the Atacama Desert, northern Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 247258.Google Scholar
Gutierrez, J.R., López-Cortes, F., Marquet, P.A., (1998). Vegetation in an altitudinal gradient along the Río Loa in the Atacama Desert of Northern Chile. Journal of Arid Environments 40, 383399.CrossRefGoogle Scholar
Heusser, C.J., (1983). Quaternary pollen record from Laguna de Tagua Tagua, Chile. Science 219, 14291432.Google Scholar
Heusser, C.J., (1990). Ice age vegetation and climate of subtropical Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 80, 107127.Google Scholar
Holmgren, C., Betancourt, J.L., Rylander, K.A., Roque, J., Tovar, O., Zeballos, H., Linares, E., Quade, J., (2001). Holocene vegetation history from fossil rodent middens near Arequipa, Peru. Quaternary Research 56, 242251.Google Scholar
Houston, J., Hartley, A.J., (2003). The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. International Journal of Climatology 23, 14531464.CrossRefGoogle Scholar
Houston, J., in press. The Great Atacama flood of 2001 and its implications for Andean hydrology.. Hydrological Processes.Google Scholar
Kull, C.M., Grosjean, M., (1998). Albedo changes, Milankovitch forcing, and late Quaternary climate changes in the central Andes. Climate Dynamics 14, 871881.Google Scholar
Lamy, F., (1998). Hebbeln, D., Wefer, G. Late Quaternary precessional cycles of terrigenous sediment input off the Norte Chico, Chile (27.5°S) and paleoclimatic implications Palaeogeography, Palaeoclimatology, Palaeoecology 141, 233251.Google Scholar
Latorre, C., (2002). “Clima y vegetación del Desierto de Atacama durante el Cuaternario tardío, II Región, Chile”.. Unpublished PhD Dissertation thesis, Universidad de Chile.Google Scholar
Latorre, C., Betancourt, J.L., Rylander, K.A., Quade, J., (2002). Vegetation invasions into Absolute Desert: a 45,000-yr rodent midden record from the Calama-Salar de Atacama Basins, northern Chile (22–24°S). Geological Society of America Bulletin 114, 349366.2.0.CO;2>CrossRefGoogle Scholar
Latorre, C., Betancourt, J.L., Rylander, K.A., Quade, J., Matthei, O., (2003). A vegetation history from the arid prepuna of northern Chile (22–23°S) over the last 13,500 years. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 223246.Google Scholar
Latorre, C., Betancourt, J.L., Rech, J.A., Quade, J., Holmgren, C., Placzek, C., Maldonado, A., Vuille, M., Rylander, K.A., (2005). Late Quaternary history of the Atacama Desert. Smith, M., Hesse, P. 23°S: The Archaeology and Environmental History of the Southern Deserts National Museum of Australia Press, Canberra, Australia.7390.Google Scholar
Lenters, J.D., Cook, K.H., (1997). On the origin of the Bolivian high and related circulation features of the South American climate. Journal of the Atmospheric Science 54, 656677.2.0.CO;2>CrossRefGoogle Scholar
Maldonado, A., Betancourt, J.L., Latorre, C., Villagrán, C., (2005). Pollen analyses from a 50,000-yr rodent midden series in the southern Atacama Desert (25° 30′S). Journal of Quaternary Science 20, 493507. doi:10.1002/jqs.936.Google Scholar
Marticorena, C., Matthei, O.R., Rodríguez, R., Arroyo, M.T.K., Muñoz, M., Squeo, F., Arancio, G., (1998). Catálogo de la flora vascular de la Segunda Región (Región de Antofagasta), Chile. Gayana Botánica 55, 2383.Google Scholar
Moreno, P.I., León, A.L., (2003). Abrupt vegetation changes during the last glacial to Holocene transition in mid-latitude South America. Journal of Quaternary Science 18, 787800.CrossRefGoogle Scholar
Moreno, P.I., Jacobson, G.L., Andersen, B.G., Lowell, T.V., Denton, G.H., (1999). Abrupt vegetation and climate changes during the last glacial maximum and the last Termination in the Chilean Lake District: a case study from Canal de la Puntilla (41°S). Geografiska Annaler. Series A. Physical Geography 81, 285311.Google Scholar
Mourguiart, P., Ledru, M.P., (2003). Last Glacial Maximum in an Andean cloud forest environment (Eastern Cordillera, Bolivia). Geology 31, 195198.Google Scholar
Mourguiart, P., Correge, T., Wirrmann, D., Argollo, J., Montenegro, M.E., Pourchet, M., Carbonel, P., (1998). Holocene palaeohydrology of Lake Titicaca estimated from an ostracod-based transfer function. Palaeogeograohy, Palaeoclimatology, Palaeoecology 143, 5172.Google Scholar
Núñez, L., Grosjean, M., Cartajena, I., (2002). Human occupations and climate change in the Puna de Atacama, Chile. Science 298, 821824.CrossRefGoogle ScholarPubMed
Paduano, G.M., Bush, M.B., Baker, P.A., Fritz, S.C., Seltzer, G.O., (2003). A vegetation and fire history of Lake Titicaca since the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 259279.Google Scholar
Placzek, C., Quade, J., and Patchett, P.J., in press. Geochronology and stratigraphy of Late Pleistocene lake cycles on the Southern Bolivian Altiplano: implications for causes of tropical climate change.. Geological Society of America Bulletin .Google Scholar
Pierrehumbert, R.T., Clark, P.U., Webb, R.S., Keigwin, L.D., (1999). Mechanisms of Global Change at Millennial Time Scales, Geophysical Monography Series. vol. 112, American Geophysical Union, Washington, DC.339361.Google Scholar
Quade, J., Rech, J., Betancourt, J., Latorre, C., (2001). Response-Mid-Holocene climate in the south-central Andes: humid or dry?. Science 292, 2391a.Google Scholar
Rech, J., Quade, J., Betancourt, J.L., (2002). Late Quaternary paleohydrology of the central Atacama Desert (22–24°S), Chile. Geological Society of America Bulletin 114, 334348.2.0.CO;2>CrossRefGoogle Scholar
Rech, J., Pigati, J.S., Quade, J., Betancourt, J.L., (2003). Re-evaluation of mid-Holocene wetland deposits at Quebrada Puripica, Northern Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 207222.CrossRefGoogle Scholar
Rein, B., Lückage, A., Reinhardt, L., Sirocko, F., Wolf, A., Dullo, W.-C., (2005). El Niño variability off Peru during the last 20,000 years. Paleoceanography 20, A4003. doi:10.1029/2004PA001099Google Scholar
Seltzer, G., Rodbell, D., Burns, S., (2000). Isotopic evidence for late Quaternary climatic change in tropical South America. Geology 28, 3538.Google Scholar
Sylvestre, F., Servant, M., Servant-Vildary, S., Causse, C., Fournier, M., Ybert, J.-P., (1999). Lake-level chronology on the Southern Bolivian Altiplano (18°–23°S) during late-glacial time and the early Holocene. Quaternary Research 51, 5466.Google Scholar
Thompson, L.G., Davis, M.E., Mosley-Thompson, E., Sowers, T.A., Henderson, K.A., Zagorodnov, V.S., Lin, P.-N., Mikhalenko, V.N., Campen, R.K., Bolzan, J.F., Cole-Dai, J., Francou, B., (1998). A 25,000-year tropical climate history from Bolivian ice cores. Science 282, 18581864.Google Scholar
Villagrán, C., Armesto, J.J., Kalin Arroyo, M.T., (1981). Vegetation in a high Andean transect between Turi and Cerro León in northern Chile. Vegetatio 48, 316.Google Scholar
Villagrán, C., Arroyo, M.T.K., Marticorena, C., (1983). Efectos de la desertización en la distribución de la flora andina de Chile. Revista Chilena de Historia Natural 56, 137157.Google Scholar
Vuille, M., Ammann, C., (1997). Regional snowfall patterns in the high, arid Andes. Climatic Change 36, 413423.Google Scholar
Vuille, M., Keimig, F., (2004). Interannual variability of summertime convective cloudiness and precipitation in the Central Andes derived from ISCCP-B3 data. Journal of Climate 17, 33343348.Google Scholar
Vuille, M., Bradley, R.S., Keimig, F., (2000). Climate modes in the Central Andes and their relation to tropical Pacific and Atlantic forcing. Journal of Geophysical Research 105, 1244712460.CrossRefGoogle Scholar
Wolfe, B.B., Aravena, R., Abbott, M.B., Seltzer, G.O., Gibson, J.J., (2001). Reconstruction of paleohydrology and paleohumidity from oxygen isotope records in the Bolivian Andes. Palaeogeograohy, Palaeoclimatology, Palaeoecology 176, 177192.Google Scholar
Zhou, J., Lau, K.-M., (1998). Does a monsoon climate exist over South America?. Journal of Climate 11, 10201040.2.0.CO;2>CrossRefGoogle Scholar